Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
4 |
|
simpr |
|- ( ( A C_ NN /\ M e. NN ) -> M e. NN ) |
5 |
|
eqidd |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) = ( ( F ` A ) ` k ) ) |
6 |
1
|
rpnnen2lem2 |
|- ( A C_ NN -> ( F ` A ) : NN --> RR ) |
7 |
6
|
adantr |
|- ( ( A C_ NN /\ M e. NN ) -> ( F ` A ) : NN --> RR ) |
8 |
7
|
ffvelrnda |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. RR ) |
9 |
8
|
recnd |
|- ( ( ( A C_ NN /\ M e. NN ) /\ k e. NN ) -> ( ( F ` A ) ` k ) e. CC ) |
10 |
|
1nn |
|- 1 e. NN |
11 |
1
|
rpnnen2lem5 |
|- ( ( A C_ NN /\ 1 e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
12 |
10 11
|
mpan2 |
|- ( A C_ NN -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
13 |
12
|
adantr |
|- ( ( A C_ NN /\ M e. NN ) -> seq 1 ( + , ( F ` A ) ) e. dom ~~> ) |
14 |
2 3 4 5 9 13
|
isumsplit |
|- ( ( A C_ NN /\ M e. NN ) -> sum_ k e. NN ( ( F ` A ) ` k ) = ( sum_ k e. ( 1 ... ( M - 1 ) ) ( ( F ` A ) ` k ) + sum_ k e. ( ZZ>= ` M ) ( ( F ` A ) ` k ) ) ) |