Step |
Hyp |
Ref |
Expression |
1 |
|
rpnnen2.1 |
|- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
2 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
3 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
4 |
|
eqidd |
|- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( F ` ( NN \ { M } ) ) ` k ) ) |
5 |
|
eluznn |
|- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> k e. NN ) |
6 |
|
difss |
|- ( NN \ { M } ) C_ NN |
7 |
1
|
rpnnen2lem2 |
|- ( ( NN \ { M } ) C_ NN -> ( F ` ( NN \ { M } ) ) : NN --> RR ) |
8 |
6 7
|
ax-mp |
|- ( F ` ( NN \ { M } ) ) : NN --> RR |
9 |
8
|
ffvelrni |
|- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) e. RR ) |
10 |
9
|
recnd |
|- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
11 |
5 10
|
syl |
|- ( ( M e. NN /\ k e. ( ZZ>= ` M ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
12 |
1
|
rpnnen2lem5 |
|- ( ( ( NN \ { M } ) C_ NN /\ M e. NN ) -> seq M ( + , ( F ` ( NN \ { M } ) ) ) e. dom ~~> ) |
13 |
6 12
|
mpan |
|- ( M e. NN -> seq M ( + , ( F ` ( NN \ { M } ) ) ) e. dom ~~> ) |
14 |
2 3 4 11 13
|
isum1p |
|- ( M e. NN -> sum_ k e. ( ZZ>= ` M ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( ( F ` ( NN \ { M } ) ) ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) ) ) |
15 |
1
|
rpnnen2lem1 |
|- ( ( ( NN \ { M } ) C_ NN /\ M e. NN ) -> ( ( F ` ( NN \ { M } ) ) ` M ) = if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) ) |
16 |
6 15
|
mpan |
|- ( M e. NN -> ( ( F ` ( NN \ { M } ) ) ` M ) = if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) ) |
17 |
|
neldifsnd |
|- ( M e. NN -> -. M e. ( NN \ { M } ) ) |
18 |
17
|
iffalsed |
|- ( M e. NN -> if ( M e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ M ) , 0 ) = 0 ) |
19 |
16 18
|
eqtrd |
|- ( M e. NN -> ( ( F ` ( NN \ { M } ) ) ` M ) = 0 ) |
20 |
|
eqid |
|- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` ( M + 1 ) ) |
21 |
|
peano2nn |
|- ( M e. NN -> ( M + 1 ) e. NN ) |
22 |
21
|
nnzd |
|- ( M e. NN -> ( M + 1 ) e. ZZ ) |
23 |
|
eqidd |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( F ` ( NN \ { M } ) ) ` k ) ) |
24 |
|
eluznn |
|- ( ( ( M + 1 ) e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. NN ) |
25 |
21 24
|
sylan |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. NN ) |
26 |
25 10
|
syl |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) e. CC ) |
27 |
|
1re |
|- 1 e. RR |
28 |
|
3nn |
|- 3 e. NN |
29 |
|
nndivre |
|- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
30 |
27 28 29
|
mp2an |
|- ( 1 / 3 ) e. RR |
31 |
30
|
recni |
|- ( 1 / 3 ) e. CC |
32 |
31
|
a1i |
|- ( M e. NN -> ( 1 / 3 ) e. CC ) |
33 |
|
0re |
|- 0 e. RR |
34 |
|
3re |
|- 3 e. RR |
35 |
|
3pos |
|- 0 < 3 |
36 |
34 35
|
recgt0ii |
|- 0 < ( 1 / 3 ) |
37 |
33 30 36
|
ltleii |
|- 0 <_ ( 1 / 3 ) |
38 |
|
absid |
|- ( ( ( 1 / 3 ) e. RR /\ 0 <_ ( 1 / 3 ) ) -> ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) ) |
39 |
30 37 38
|
mp2an |
|- ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) |
40 |
|
1lt3 |
|- 1 < 3 |
41 |
|
recgt1 |
|- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
42 |
34 35 41
|
mp2an |
|- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
43 |
40 42
|
mpbi |
|- ( 1 / 3 ) < 1 |
44 |
39 43
|
eqbrtri |
|- ( abs ` ( 1 / 3 ) ) < 1 |
45 |
44
|
a1i |
|- ( M e. NN -> ( abs ` ( 1 / 3 ) ) < 1 ) |
46 |
21
|
nnnn0d |
|- ( M e. NN -> ( M + 1 ) e. NN0 ) |
47 |
1
|
rpnnen2lem1 |
|- ( ( ( NN \ { M } ) C_ NN /\ k e. NN ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
48 |
6 47
|
mpan |
|- ( k e. NN -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
49 |
25 48
|
syl |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
50 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
51 |
50
|
adantr |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> M e. RR ) |
52 |
|
eluzle |
|- ( k e. ( ZZ>= ` ( M + 1 ) ) -> ( M + 1 ) <_ k ) |
53 |
52
|
adantl |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M + 1 ) <_ k ) |
54 |
|
nnltp1le |
|- ( ( M e. NN /\ k e. NN ) -> ( M < k <-> ( M + 1 ) <_ k ) ) |
55 |
25 54
|
syldan |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( M < k <-> ( M + 1 ) <_ k ) ) |
56 |
53 55
|
mpbird |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> M < k ) |
57 |
51 56
|
gtned |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k =/= M ) |
58 |
|
eldifsn |
|- ( k e. ( NN \ { M } ) <-> ( k e. NN /\ k =/= M ) ) |
59 |
25 57 58
|
sylanbrc |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> k e. ( NN \ { M } ) ) |
60 |
59
|
iftrued |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> if ( k e. ( NN \ { M } ) , ( ( 1 / 3 ) ^ k ) , 0 ) = ( ( 1 / 3 ) ^ k ) ) |
61 |
49 60
|
eqtrd |
|- ( ( M e. NN /\ k e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( 1 / 3 ) ^ k ) ) |
62 |
32 45 46 61
|
geolim2 |
|- ( M e. NN -> seq ( M + 1 ) ( + , ( F ` ( NN \ { M } ) ) ) ~~> ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) |
63 |
20 22 23 26 62
|
isumclim |
|- ( M e. NN -> sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) |
64 |
19 63
|
oveq12d |
|- ( M e. NN -> ( ( ( F ` ( NN \ { M } ) ) ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( ( F ` ( NN \ { M } ) ) ` k ) ) = ( 0 + ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |
65 |
14 64
|
eqtrd |
|- ( M e. NN -> sum_ k e. ( ZZ>= ` M ) ( ( F ` ( NN \ { M } ) ) ` k ) = ( 0 + ( ( ( 1 / 3 ) ^ ( M + 1 ) ) / ( 1 - ( 1 / 3 ) ) ) ) ) |