| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
| 2 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN ) |
| 3 |
2
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 4 |
1 3
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A ^ N ) e. NN ) |
| 5 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
| 6 |
4 5 2
|
3jca |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) ) |
| 7 |
|
rplpwr |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) ) |
| 8 |
|
rprpwr |
|- ( ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |
| 9 |
6 7 8
|
sylsyld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) ) |