Metamath Proof Explorer


Theorem rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rppwr
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN )
2 simp3
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN )
3 2 nnnn0d
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 )
4 1 3 nnexpcld
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A ^ N ) e. NN )
5 simp2
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN )
6 4 5 2 3jca
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) )
7 rplpwr
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd B ) = 1 ) )
8 rprpwr
 |-  ( ( ( A ^ N ) e. NN /\ B e. NN /\ N e. NN ) -> ( ( ( A ^ N ) gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) )
9 6 7 8 sylsyld
 |-  ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( ( A ^ N ) gcd ( B ^ N ) ) = 1 ) )