Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| Assertion | rpred | |- ( ph -> A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpssre | |- RR+ C_ RR |
|
| 3 | 2 1 | sselid | |- ( ph -> A e. RR ) |