Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpred.1 | |- ( ph -> A e. RR+ ) |
|
Assertion | rpred | |- ( ph -> A e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
2 | rpssre | |- RR+ C_ RR |
|
3 | 2 1 | sselid | |- ( ph -> A e. RR ) |