Metamath Proof Explorer


Theorem rpregt0

Description: A positive real is a positive real number. (Contributed by NM, 11-Nov-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion rpregt0
|- ( A e. RR+ -> ( A e. RR /\ 0 < A ) )

Proof

Step Hyp Ref Expression
1 elrp
 |-  ( A e. RR+ <-> ( A e. RR /\ 0 < A ) )
2 1 biimpi
 |-  ( A e. RR+ -> ( A e. RR /\ 0 < A ) )