Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| Assertion | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | 1 | rpred | |- ( ph -> A e. RR ) |
| 3 | 1 | rpgt0d | |- ( ph -> 0 < A ) |
| 4 | 2 3 | jca | |- ( ph -> ( A e. RR /\ 0 < A ) ) |