Metamath Proof Explorer


Theorem rprene0

Description: A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion rprene0
|- ( A e. RR+ -> ( A e. RR /\ A =/= 0 ) )

Proof

Step Hyp Ref Expression
1 rpre
 |-  ( A e. RR+ -> A e. RR )
2 rpne0
 |-  ( A e. RR+ -> A =/= 0 )
3 1 2 jca
 |-  ( A e. RR+ -> ( A e. RR /\ A =/= 0 ) )