| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
|- RR+ C_ RR |
| 2 |
|
ax-resscn |
|- RR C_ CC |
| 3 |
1 2
|
sstri |
|- RR+ C_ CC |
| 4 |
|
1rp |
|- 1 e. RR+ |
| 5 |
|
rpmulcl |
|- ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) |
| 6 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 7 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 8 |
|
readdcl |
|- ( ( A e. RR /\ k e. RR ) -> ( A + k ) e. RR ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR ) |
| 10 |
6
|
adantr |
|- ( ( A e. RR+ /\ k e. NN0 ) -> A e. RR ) |
| 11 |
7
|
adantl |
|- ( ( A e. RR+ /\ k e. NN0 ) -> k e. RR ) |
| 12 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
| 13 |
12
|
adantr |
|- ( ( A e. RR+ /\ k e. NN0 ) -> 0 < A ) |
| 14 |
|
nn0ge0 |
|- ( k e. NN0 -> 0 <_ k ) |
| 15 |
14
|
adantl |
|- ( ( A e. RR+ /\ k e. NN0 ) -> 0 <_ k ) |
| 16 |
10 11 13 15
|
addgtge0d |
|- ( ( A e. RR+ /\ k e. NN0 ) -> 0 < ( A + k ) ) |
| 17 |
9 16
|
elrpd |
|- ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR+ ) |
| 18 |
3 4 5 17
|
risefaccllem |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( A RiseFac N ) e. RR+ ) |