Step |
Hyp |
Ref |
Expression |
1 |
|
rprmasso.b |
|- B = ( Base ` R ) |
2 |
|
rprmasso.p |
|- P = ( RPrime ` R ) |
3 |
|
rprmasso.d |
|- .|| = ( ||r ` R ) |
4 |
|
rprmasso.r |
|- ( ph -> R e. IDomn ) |
5 |
|
rprmasso.x |
|- ( ph -> X e. P ) |
6 |
|
rprmasso.1 |
|- ( ph -> X .|| Y ) |
7 |
|
rprmasso.y |
|- ( ph -> Y .|| X ) |
8 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
9 |
1 2 4 5
|
rprmcl |
|- ( ph -> X e. B ) |
10 |
1 3
|
dvdsrcl |
|- ( Y .|| X -> Y e. B ) |
11 |
7 10
|
syl |
|- ( ph -> Y e. B ) |
12 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
13 |
1 8 3 9 11 12
|
rspsnasso |
|- ( ph -> ( ( X .|| Y /\ Y .|| X ) <-> ( ( RSpan ` R ) ` { Y } ) = ( ( RSpan ` R ) ` { X } ) ) ) |
14 |
6 7 13
|
mpbi2and |
|- ( ph -> ( ( RSpan ` R ) ` { Y } ) = ( ( RSpan ` R ) ` { X } ) ) |
15 |
4
|
idomcringd |
|- ( ph -> R e. CRing ) |
16 |
5 2
|
eleqtrdi |
|- ( ph -> X e. ( RPrime ` R ) ) |
17 |
8 15 16
|
rsprprmprmidl |
|- ( ph -> ( ( RSpan ` R ) ` { X } ) e. ( PrmIdeal ` R ) ) |
18 |
14 17
|
eqeltrd |
|- ( ph -> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) |
19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
20 |
2 19 4 5
|
rprmnz |
|- ( ph -> X =/= ( 0g ` R ) ) |
21 |
12
|
adantr |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> R e. Ring ) |
22 |
9
|
adantr |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> X e. B ) |
23 |
|
simpr |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> Y = ( 0g ` R ) ) |
24 |
7
|
adantr |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> Y .|| X ) |
25 |
23 24
|
eqbrtrrd |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> ( 0g ` R ) .|| X ) |
26 |
1 3 19
|
dvdsr02 |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 0g ` R ) .|| X <-> X = ( 0g ` R ) ) ) |
27 |
26
|
biimpa |
|- ( ( ( R e. Ring /\ X e. B ) /\ ( 0g ` R ) .|| X ) -> X = ( 0g ` R ) ) |
28 |
21 22 25 27
|
syl21anc |
|- ( ( ph /\ Y = ( 0g ` R ) ) -> X = ( 0g ` R ) ) |
29 |
20 28
|
mteqand |
|- ( ph -> Y =/= ( 0g ` R ) ) |
30 |
19 1 2 8 4 11 29
|
rsprprmprmidlb |
|- ( ph -> ( Y e. P <-> ( ( RSpan ` R ) ` { Y } ) e. ( PrmIdeal ` R ) ) ) |
31 |
18 30
|
mpbird |
|- ( ph -> Y e. P ) |