Step |
Hyp |
Ref |
Expression |
1 |
|
rprmcl.b |
|- B = ( Base ` R ) |
2 |
|
rprmcl.p |
|- P = ( RPrime ` R ) |
3 |
|
rprmcl.r |
|- ( ph -> R e. V ) |
4 |
|
rprmcl.x |
|- ( ph -> X e. P ) |
5 |
4 2
|
eleqtrdi |
|- ( ph -> X e. ( RPrime ` R ) ) |
6 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
8 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
10 |
1 6 7 8 9
|
isrprm |
|- ( R e. V -> ( X e. ( RPrime ` R ) <-> ( X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) /\ A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) ) ) |
11 |
10
|
simprbda |
|- ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) ) |
12 |
11
|
eldifad |
|- ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. B ) |
13 |
3 5 12
|
syl2anc |
|- ( ph -> X e. B ) |