Metamath Proof Explorer


Theorem rprmcl

Description: A ring prime is an element of the base set. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmcl.b
|- B = ( Base ` R )
rprmcl.p
|- P = ( RPrime ` R )
rprmcl.r
|- ( ph -> R e. V )
rprmcl.x
|- ( ph -> X e. P )
Assertion rprmcl
|- ( ph -> X e. B )

Proof

Step Hyp Ref Expression
1 rprmcl.b
 |-  B = ( Base ` R )
2 rprmcl.p
 |-  P = ( RPrime ` R )
3 rprmcl.r
 |-  ( ph -> R e. V )
4 rprmcl.x
 |-  ( ph -> X e. P )
5 4 2 eleqtrdi
 |-  ( ph -> X e. ( RPrime ` R ) )
6 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
7 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
8 eqid
 |-  ( ||r ` R ) = ( ||r ` R )
9 eqid
 |-  ( .r ` R ) = ( .r ` R )
10 1 6 7 8 9 isrprm
 |-  ( R e. V -> ( X e. ( RPrime ` R ) <-> ( X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) /\ A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) ) )
11 10 simprbda
 |-  ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { ( 0g ` R ) } ) ) )
12 11 eldifad
 |-  ( ( R e. V /\ X e. ( RPrime ` R ) ) -> X e. B )
13 3 5 12 syl2anc
 |-  ( ph -> X e. B )