Metamath Proof Explorer


Theorem rprmirredlem

Description: Lemma for rprmirred . (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmirredlem.1
|- B = ( Base ` R )
rprmirredlem.2
|- U = ( Unit ` R )
rprmirredlem.3
|- .0. = ( 0g ` R )
rprmirredlem.4
|- .x. = ( .r ` R )
rprmirredlem.5
|- .|| = ( ||r ` R )
rprmirredlem.6
|- ( ph -> R e. IDomn )
rprmirredlem.7
|- ( ph -> Q =/= .0. )
rprmirredlem.8
|- ( ph -> X e. ( B \ U ) )
rprmirredlem.9
|- ( ph -> Y e. B )
rprmirredlem.10
|- ( ph -> Q = ( X .x. Y ) )
rprmirredlem.11
|- ( ph -> Q .|| X )
Assertion rprmirredlem
|- ( ph -> Y e. U )

Proof

Step Hyp Ref Expression
1 rprmirredlem.1
 |-  B = ( Base ` R )
2 rprmirredlem.2
 |-  U = ( Unit ` R )
3 rprmirredlem.3
 |-  .0. = ( 0g ` R )
4 rprmirredlem.4
 |-  .x. = ( .r ` R )
5 rprmirredlem.5
 |-  .|| = ( ||r ` R )
6 rprmirredlem.6
 |-  ( ph -> R e. IDomn )
7 rprmirredlem.7
 |-  ( ph -> Q =/= .0. )
8 rprmirredlem.8
 |-  ( ph -> X e. ( B \ U ) )
9 rprmirredlem.9
 |-  ( ph -> Y e. B )
10 rprmirredlem.10
 |-  ( ph -> Q = ( X .x. Y ) )
11 rprmirredlem.11
 |-  ( ph -> Q .|| X )
12 6 idomcringd
 |-  ( ph -> R e. CRing )
13 12 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. CRing )
14 9 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. B )
15 1 5 4 dvdsr
 |-  ( Q .|| X <-> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) )
16 11 15 sylib
 |-  ( ph -> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) )
17 16 simpld
 |-  ( ph -> Q e. B )
18 17 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. B )
19 7 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q =/= .0. )
20 18 19 eldifsnd
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. ( B \ { .0. } ) )
21 13 crngringd
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. Ring )
22 simplr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> t e. B )
23 1 4 21 22 14 ringcld
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) e. B )
24 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
25 1 24 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. B )
26 21 25 syl
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( 1r ` R ) e. B )
27 6 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. IDomn )
28 simpr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Q ) = X )
29 28 oveq1d
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = ( X .x. Y ) )
30 10 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q = ( X .x. Y ) )
31 29 30 eqtr4d
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = Q )
32 1 4 13 22 14 18 cringmul32d
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( t .x. Q ) .x. Y ) )
33 1 4 24 21 18 ringlidmd
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( 1r ` R ) .x. Q ) = Q )
34 31 32 33 3eqtr4d
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( 1r ` R ) .x. Q ) )
35 1 3 4 20 23 26 27 34 idomrcan
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) = ( 1r ` R ) )
36 16 simprd
 |-  ( ph -> E. t e. B ( t .x. Q ) = X )
37 35 36 reximddv3
 |-  ( ph -> E. t e. B ( t .x. Y ) = ( 1r ` R ) )
38 37 ad2antrr
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> E. t e. B ( t .x. Y ) = ( 1r ` R ) )
39 1 5 4 dvdsr
 |-  ( Y .|| ( 1r ` R ) <-> ( Y e. B /\ E. t e. B ( t .x. Y ) = ( 1r ` R ) ) )
40 14 38 39 sylanbrc
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y .|| ( 1r ` R ) )
41 2 24 5 crngunit
 |-  ( R e. CRing -> ( Y e. U <-> Y .|| ( 1r ` R ) ) )
42 41 biimpar
 |-  ( ( R e. CRing /\ Y .|| ( 1r ` R ) ) -> Y e. U )
43 13 40 42 syl2anc
 |-  ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. U )
44 43 36 r19.29a
 |-  ( ph -> Y e. U )