Step |
Hyp |
Ref |
Expression |
1 |
|
rprmirredlem.1 |
|- B = ( Base ` R ) |
2 |
|
rprmirredlem.2 |
|- U = ( Unit ` R ) |
3 |
|
rprmirredlem.3 |
|- .0. = ( 0g ` R ) |
4 |
|
rprmirredlem.4 |
|- .x. = ( .r ` R ) |
5 |
|
rprmirredlem.5 |
|- .|| = ( ||r ` R ) |
6 |
|
rprmirredlem.6 |
|- ( ph -> R e. IDomn ) |
7 |
|
rprmirredlem.7 |
|- ( ph -> Q =/= .0. ) |
8 |
|
rprmirredlem.8 |
|- ( ph -> X e. ( B \ U ) ) |
9 |
|
rprmirredlem.9 |
|- ( ph -> Y e. B ) |
10 |
|
rprmirredlem.10 |
|- ( ph -> Q = ( X .x. Y ) ) |
11 |
|
rprmirredlem.11 |
|- ( ph -> Q .|| X ) |
12 |
6
|
idomcringd |
|- ( ph -> R e. CRing ) |
13 |
12
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. CRing ) |
14 |
9
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. B ) |
15 |
1 5 4
|
dvdsr |
|- ( Q .|| X <-> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) ) |
16 |
11 15
|
sylib |
|- ( ph -> ( Q e. B /\ E. t e. B ( t .x. Q ) = X ) ) |
17 |
16
|
simpld |
|- ( ph -> Q e. B ) |
18 |
17
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. B ) |
19 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q =/= .0. ) |
20 |
18 19
|
eldifsnd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q e. ( B \ { .0. } ) ) |
21 |
13
|
crngringd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. Ring ) |
22 |
|
simplr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> t e. B ) |
23 |
1 4 21 22 14
|
ringcld |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) e. B ) |
24 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
25 |
1 24
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
26 |
21 25
|
syl |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( 1r ` R ) e. B ) |
27 |
6
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> R e. IDomn ) |
28 |
|
simpr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Q ) = X ) |
29 |
28
|
oveq1d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = ( X .x. Y ) ) |
30 |
10
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Q = ( X .x. Y ) ) |
31 |
29 30
|
eqtr4d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Q ) .x. Y ) = Q ) |
32 |
1 4 13 22 14 18
|
cringmul32d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( t .x. Q ) .x. Y ) ) |
33 |
1 4 24 21 18
|
ringlidmd |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( 1r ` R ) .x. Q ) = Q ) |
34 |
31 32 33
|
3eqtr4d |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( ( t .x. Y ) .x. Q ) = ( ( 1r ` R ) .x. Q ) ) |
35 |
1 3 4 20 23 26 27 34
|
idomrcan |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> ( t .x. Y ) = ( 1r ` R ) ) |
36 |
16
|
simprd |
|- ( ph -> E. t e. B ( t .x. Q ) = X ) |
37 |
35 36
|
reximddv3 |
|- ( ph -> E. t e. B ( t .x. Y ) = ( 1r ` R ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> E. t e. B ( t .x. Y ) = ( 1r ` R ) ) |
39 |
1 5 4
|
dvdsr |
|- ( Y .|| ( 1r ` R ) <-> ( Y e. B /\ E. t e. B ( t .x. Y ) = ( 1r ` R ) ) ) |
40 |
14 38 39
|
sylanbrc |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y .|| ( 1r ` R ) ) |
41 |
2 24 5
|
crngunit |
|- ( R e. CRing -> ( Y e. U <-> Y .|| ( 1r ` R ) ) ) |
42 |
41
|
biimpar |
|- ( ( R e. CRing /\ Y .|| ( 1r ` R ) ) -> Y e. U ) |
43 |
13 40 42
|
syl2anc |
|- ( ( ( ph /\ t e. B ) /\ ( t .x. Q ) = X ) -> Y e. U ) |
44 |
43 36
|
r19.29a |
|- ( ph -> Y e. U ) |