Metamath Proof Explorer


Theorem rprmndvdsr1

Description: A ring prime element does not divide the ring multiplicative identity. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmndvdsr1.1
|- .1. = ( 1r ` R )
rprmndvdsr1.2
|- .|| = ( ||r ` R )
rprmndvdsr1.3
|- P = ( RPrime ` R )
rprmndvdsr1.4
|- ( ph -> R e. CRing )
rprmndvdsr1.5
|- ( ph -> Q e. P )
Assertion rprmndvdsr1
|- ( ph -> -. Q .|| .1. )

Proof

Step Hyp Ref Expression
1 rprmndvdsr1.1
 |-  .1. = ( 1r ` R )
2 rprmndvdsr1.2
 |-  .|| = ( ||r ` R )
3 rprmndvdsr1.3
 |-  P = ( RPrime ` R )
4 rprmndvdsr1.4
 |-  ( ph -> R e. CRing )
5 rprmndvdsr1.5
 |-  ( ph -> Q e. P )
6 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
7 3 6 4 5 rprmnunit
 |-  ( ph -> -. Q e. ( Unit ` R ) )
8 6 1 2 crngunit
 |-  ( R e. CRing -> ( Q e. ( Unit ` R ) <-> Q .|| .1. ) )
9 4 8 syl
 |-  ( ph -> ( Q e. ( Unit ` R ) <-> Q .|| .1. ) )
10 7 9 mtbid
 |-  ( ph -> -. Q .|| .1. )