Metamath Proof Explorer


Theorem rprmnunit

Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypotheses rprmdvds.2
|- P = ( RPrime ` R )
rprmdvds.3
|- U = ( Unit ` R )
rprmdvds.5
|- ( ph -> R e. V )
rprmdvds.6
|- ( ph -> Q e. P )
Assertion rprmnunit
|- ( ph -> -. Q e. U )

Proof

Step Hyp Ref Expression
1 rprmdvds.2
 |-  P = ( RPrime ` R )
2 rprmdvds.3
 |-  U = ( Unit ` R )
3 rprmdvds.5
 |-  ( ph -> R e. V )
4 rprmdvds.6
 |-  ( ph -> Q e. P )
5 eqidd
 |-  ( ph -> ( U u. { ( 0g ` R ) } ) = ( U u. { ( 0g ` R ) } ) )
6 4 1 eleqtrdi
 |-  ( ph -> Q e. ( RPrime ` R ) )
7 eqid
 |-  ( Base ` R ) = ( Base ` R )
8 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
9 eqid
 |-  ( ||r ` R ) = ( ||r ` R )
10 eqid
 |-  ( .r ` R ) = ( .r ` R )
11 7 2 8 9 10 isrprm
 |-  ( R e. V -> ( Q e. ( RPrime ` R ) <-> ( Q e. ( ( Base ` R ) \ ( U u. { ( 0g ` R ) } ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( Q ( ||r ` R ) ( x ( .r ` R ) y ) -> ( Q ( ||r ` R ) x \/ Q ( ||r ` R ) y ) ) ) ) )
12 11 simprbda
 |-  ( ( R e. V /\ Q e. ( RPrime ` R ) ) -> Q e. ( ( Base ` R ) \ ( U u. { ( 0g ` R ) } ) ) )
13 3 6 12 syl2anc
 |-  ( ph -> Q e. ( ( Base ` R ) \ ( U u. { ( 0g ` R ) } ) ) )
14 13 eldifbd
 |-  ( ph -> -. Q e. ( U u. { ( 0g ` R ) } ) )
15 nelun
 |-  ( ( U u. { ( 0g ` R ) } ) = ( U u. { ( 0g ` R ) } ) -> ( -. Q e. ( U u. { ( 0g ` R ) } ) <-> ( -. Q e. U /\ -. Q e. { ( 0g ` R ) } ) ) )
16 15 simprbda
 |-  ( ( ( U u. { ( 0g ` R ) } ) = ( U u. { ( 0g ` R ) } ) /\ -. Q e. ( U u. { ( 0g ` R ) } ) ) -> -. Q e. U )
17 5 14 16 syl2anc
 |-  ( ph -> -. Q e. U )