Step |
Hyp |
Ref |
Expression |
1 |
|
rprmnz.p |
|- P = ( RPrime ` R ) |
2 |
|
rprmnz.0 |
|- .0. = ( 0g ` R ) |
3 |
|
rprmnz.r |
|- ( ph -> R e. V ) |
4 |
|
rprmnz.q |
|- ( ph -> Q e. P ) |
5 |
|
eqidd |
|- ( ph -> ( ( Unit ` R ) u. { .0. } ) = ( ( Unit ` R ) u. { .0. } ) ) |
6 |
4 1
|
eleqtrdi |
|- ( ph -> Q e. ( RPrime ` R ) ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
9 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
10 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
11 |
7 8 2 9 10
|
isrprm |
|- ( R e. V -> ( Q e. ( RPrime ` R ) <-> ( Q e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { .0. } ) ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( Q ( ||r ` R ) ( x ( .r ` R ) y ) -> ( Q ( ||r ` R ) x \/ Q ( ||r ` R ) y ) ) ) ) ) |
12 |
11
|
simprbda |
|- ( ( R e. V /\ Q e. ( RPrime ` R ) ) -> Q e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { .0. } ) ) ) |
13 |
3 6 12
|
syl2anc |
|- ( ph -> Q e. ( ( Base ` R ) \ ( ( Unit ` R ) u. { .0. } ) ) ) |
14 |
13
|
eldifbd |
|- ( ph -> -. Q e. ( ( Unit ` R ) u. { .0. } ) ) |
15 |
|
nelun |
|- ( ( ( Unit ` R ) u. { .0. } ) = ( ( Unit ` R ) u. { .0. } ) -> ( -. Q e. ( ( Unit ` R ) u. { .0. } ) <-> ( -. Q e. ( Unit ` R ) /\ -. Q e. { .0. } ) ) ) |
16 |
15
|
simplbda |
|- ( ( ( ( Unit ` R ) u. { .0. } ) = ( ( Unit ` R ) u. { .0. } ) /\ -. Q e. ( ( Unit ` R ) u. { .0. } ) ) -> -. Q e. { .0. } ) |
17 |
5 14 16
|
syl2anc |
|- ( ph -> -. Q e. { .0. } ) |
18 |
|
elsng |
|- ( Q e. P -> ( Q e. { .0. } <-> Q = .0. ) ) |
19 |
4 18
|
syl |
|- ( ph -> ( Q e. { .0. } <-> Q = .0. ) ) |
20 |
19
|
necon3bbid |
|- ( ph -> ( -. Q e. { .0. } <-> Q =/= .0. ) ) |
21 |
17 20
|
mpbid |
|- ( ph -> Q =/= .0. ) |