| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rplpwr |
|- ( ( B e. NN /\ A e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
| 2 |
1
|
3com12 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
| 3 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 4 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
| 5 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 7 |
6
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
| 8 |
7
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 <-> ( B gcd A ) = 1 ) ) |
| 9 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
| 10 |
9
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. ZZ ) |
| 11 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
| 12 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN ) |
| 13 |
12
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
| 14 |
11 13
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
| 15 |
14
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
| 16 |
10 15
|
gcdcomd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd ( B ^ N ) ) = ( ( B ^ N ) gcd A ) ) |
| 17 |
16
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd A ) = 1 ) ) |
| 18 |
2 8 17
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( A gcd ( B ^ N ) ) = 1 ) ) |