Step |
Hyp |
Ref |
Expression |
1 |
|
rplpwr |
|- ( ( B e. NN /\ A e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
2 |
1
|
3com12 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( B gcd A ) = 1 -> ( ( B ^ N ) gcd A ) = 1 ) ) |
3 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
4 |
|
nnz |
|- ( B e. NN -> B e. ZZ ) |
5 |
|
gcdcom |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd B ) = ( B gcd A ) ) |
8 |
7
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 <-> ( B gcd A ) = 1 ) ) |
9 |
|
simp1 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. NN ) |
10 |
9
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> A e. ZZ ) |
11 |
|
simp2 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> B e. NN ) |
12 |
|
simp3 |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN ) |
13 |
12
|
nnnn0d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> N e. NN0 ) |
14 |
11 13
|
nnexpcld |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. NN ) |
15 |
14
|
nnzd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( B ^ N ) e. ZZ ) |
16 |
10 15
|
gcdcomd |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( A gcd ( B ^ N ) ) = ( ( B ^ N ) gcd A ) ) |
17 |
16
|
eqeq1d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd ( B ^ N ) ) = 1 <-> ( ( B ^ N ) gcd A ) = 1 ) ) |
18 |
2 8 17
|
3imtr4d |
|- ( ( A e. NN /\ B e. NN /\ N e. NN ) -> ( ( A gcd B ) = 1 -> ( A gcd ( B ^ N ) ) = 1 ) ) |