Metamath Proof Explorer


Theorem rpsqrtcl

Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpsqrtcl
|- ( A e. RR+ -> ( sqrt ` A ) e. RR+ )

Proof

Step Hyp Ref Expression
1 rpre
 |-  ( A e. RR+ -> A e. RR )
2 rpge0
 |-  ( A e. RR+ -> 0 <_ A )
3 resqrtcl
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR )
4 1 2 3 syl2anc
 |-  ( A e. RR+ -> ( sqrt ` A ) e. RR )
5 rpgt0
 |-  ( A e. RR+ -> 0 < A )
6 sqrtgt0
 |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) )
7 1 5 6 syl2anc
 |-  ( A e. RR+ -> 0 < ( sqrt ` A ) )
8 4 7 elrpd
 |-  ( A e. RR+ -> ( sqrt ` A ) e. RR+ )