Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | rpsqrtcl | |- ( A e. RR+ -> ( sqrt ` A ) e. RR+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
2 | rpge0 | |- ( A e. RR+ -> 0 <_ A ) |
|
3 | resqrtcl | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` A ) e. RR ) |
|
4 | 1 2 3 | syl2anc | |- ( A e. RR+ -> ( sqrt ` A ) e. RR ) |
5 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
6 | sqrtgt0 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( sqrt ` A ) ) |
|
7 | 1 5 6 | syl2anc | |- ( A e. RR+ -> 0 < ( sqrt ` A ) ) |
8 | 4 7 | elrpd | |- ( A e. RR+ -> ( sqrt ` A ) e. RR+ ) |