Metamath Proof Explorer


Theorem rpsqrtcn

Description: Continuity of the real positive square root function. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Assertion rpsqrtcn
|- ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ )

Proof

Step Hyp Ref Expression
1 rpssre
 |-  RR+ C_ RR
2 ax-resscn
 |-  RR C_ CC
3 1 2 sstri
 |-  RR+ C_ CC
4 sqrtf
 |-  sqrt : CC --> CC
5 fdm
 |-  ( sqrt : CC --> CC -> dom sqrt = CC )
6 4 5 ax-mp
 |-  dom sqrt = CC
7 3 6 sseqtrri
 |-  RR+ C_ dom sqrt
8 7 sseli
 |-  ( x e. RR+ -> x e. dom sqrt )
9 rpsqrtcl
 |-  ( x e. RR+ -> ( sqrt ` x ) e. RR+ )
10 8 9 jca
 |-  ( x e. RR+ -> ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) )
11 10 rgen
 |-  A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ )
12 ffun
 |-  ( sqrt : CC --> CC -> Fun sqrt )
13 4 12 ax-mp
 |-  Fun sqrt
14 ffvresb
 |-  ( Fun sqrt -> ( ( sqrt |` RR+ ) : RR+ --> RR+ <-> A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) ) )
15 13 14 ax-mp
 |-  ( ( sqrt |` RR+ ) : RR+ --> RR+ <-> A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) )
16 11 15 mpbir
 |-  ( sqrt |` RR+ ) : RR+ --> RR+
17 ioorp
 |-  ( 0 (,) +oo ) = RR+
18 ioossico
 |-  ( 0 (,) +oo ) C_ ( 0 [,) +oo )
19 17 18 eqsstrri
 |-  RR+ C_ ( 0 [,) +oo )
20 resabs1
 |-  ( RR+ C_ ( 0 [,) +oo ) -> ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) = ( sqrt |` RR+ ) )
21 19 20 ax-mp
 |-  ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) = ( sqrt |` RR+ )
22 resqrtcn
 |-  ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR )
23 rescncf
 |-  ( RR+ C_ ( 0 [,) +oo ) -> ( ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) -> ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) e. ( RR+ -cn-> RR ) ) )
24 19 22 23 mp2
 |-  ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) e. ( RR+ -cn-> RR )
25 21 24 eqeltrri
 |-  ( sqrt |` RR+ ) e. ( RR+ -cn-> RR )
26 cncffvrn
 |-  ( ( RR+ C_ CC /\ ( sqrt |` RR+ ) e. ( RR+ -cn-> RR ) ) -> ( ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ ) <-> ( sqrt |` RR+ ) : RR+ --> RR+ ) )
27 3 25 26 mp2an
 |-  ( ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ ) <-> ( sqrt |` RR+ ) : RR+ --> RR+ )
28 16 27 mpbir
 |-  ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ )