Step |
Hyp |
Ref |
Expression |
1 |
|
rpssre |
|- RR+ C_ RR |
2 |
|
ax-resscn |
|- RR C_ CC |
3 |
1 2
|
sstri |
|- RR+ C_ CC |
4 |
|
sqrtf |
|- sqrt : CC --> CC |
5 |
|
fdm |
|- ( sqrt : CC --> CC -> dom sqrt = CC ) |
6 |
4 5
|
ax-mp |
|- dom sqrt = CC |
7 |
3 6
|
sseqtrri |
|- RR+ C_ dom sqrt |
8 |
7
|
sseli |
|- ( x e. RR+ -> x e. dom sqrt ) |
9 |
|
rpsqrtcl |
|- ( x e. RR+ -> ( sqrt ` x ) e. RR+ ) |
10 |
8 9
|
jca |
|- ( x e. RR+ -> ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) ) |
11 |
10
|
rgen |
|- A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) |
12 |
|
ffun |
|- ( sqrt : CC --> CC -> Fun sqrt ) |
13 |
4 12
|
ax-mp |
|- Fun sqrt |
14 |
|
ffvresb |
|- ( Fun sqrt -> ( ( sqrt |` RR+ ) : RR+ --> RR+ <-> A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) ) ) |
15 |
13 14
|
ax-mp |
|- ( ( sqrt |` RR+ ) : RR+ --> RR+ <-> A. x e. RR+ ( x e. dom sqrt /\ ( sqrt ` x ) e. RR+ ) ) |
16 |
11 15
|
mpbir |
|- ( sqrt |` RR+ ) : RR+ --> RR+ |
17 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
18 |
|
ioossico |
|- ( 0 (,) +oo ) C_ ( 0 [,) +oo ) |
19 |
17 18
|
eqsstrri |
|- RR+ C_ ( 0 [,) +oo ) |
20 |
|
resabs1 |
|- ( RR+ C_ ( 0 [,) +oo ) -> ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) = ( sqrt |` RR+ ) ) |
21 |
19 20
|
ax-mp |
|- ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) = ( sqrt |` RR+ ) |
22 |
|
resqrtcn |
|- ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) |
23 |
|
rescncf |
|- ( RR+ C_ ( 0 [,) +oo ) -> ( ( sqrt |` ( 0 [,) +oo ) ) e. ( ( 0 [,) +oo ) -cn-> RR ) -> ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) e. ( RR+ -cn-> RR ) ) ) |
24 |
19 22 23
|
mp2 |
|- ( ( sqrt |` ( 0 [,) +oo ) ) |` RR+ ) e. ( RR+ -cn-> RR ) |
25 |
21 24
|
eqeltrri |
|- ( sqrt |` RR+ ) e. ( RR+ -cn-> RR ) |
26 |
|
cncffvrn |
|- ( ( RR+ C_ CC /\ ( sqrt |` RR+ ) e. ( RR+ -cn-> RR ) ) -> ( ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ ) <-> ( sqrt |` RR+ ) : RR+ --> RR+ ) ) |
27 |
3 25 26
|
mp2an |
|- ( ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ ) <-> ( sqrt |` RR+ ) : RR+ --> RR+ ) |
28 |
16 27
|
mpbir |
|- ( sqrt |` RR+ ) e. ( RR+ -cn-> RR+ ) |