Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
reex |
|- RR e. _V |
8 |
|
rpssre |
|- RR+ C_ RR |
9 |
7 8
|
ssexi |
|- RR+ e. _V |
10 |
9
|
a1i |
|- ( ph -> RR+ e. _V ) |
11 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
12 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
13 |
12
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
14 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
15 |
13 14
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
16 |
15 13
|
nndivred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
17 |
16
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
18 |
11 17
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
19 |
18
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) |
20 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
21 |
20
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
22 |
21
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
23 |
19 22
|
subcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. CC ) |
24 |
|
1re |
|- 1 e. RR |
25 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
26 |
4 1 6 25 3
|
dchr1re |
|- ( ph -> .1. : ( Base ` Z ) --> RR ) |
27 |
26
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> .1. : ( Base ` Z ) --> RR ) |
28 |
3
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
29 |
1 25 2
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Z ) ) |
30 |
|
fof |
|- ( L : ZZ -onto-> ( Base ` Z ) -> L : ZZ --> ( Base ` Z ) ) |
31 |
28 29 30
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` Z ) ) |
32 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. ZZ ) |
33 |
|
ffvelrn |
|- ( ( L : ZZ --> ( Base ` Z ) /\ n e. ZZ ) -> ( L ` n ) e. ( Base ` Z ) ) |
34 |
31 32 33
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` n ) e. ( Base ` Z ) ) |
35 |
27 34
|
ffvelrnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. RR ) |
36 |
|
resubcl |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` n ) ) e. RR ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
37 |
24 35 36
|
sylancr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
38 |
37 16
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
39 |
38
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
40 |
11 39
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
41 |
40
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
42 |
|
eqidd |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) ) |
43 |
|
eqidd |
|- ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
44 |
10 23 41 42 43
|
offval2 |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) ) |
45 |
19 22 41
|
sub32d |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) ) |
46 |
11 17 39
|
fsumsub |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
47 |
|
1cnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
48 |
37
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. CC ) |
49 |
47 48 17
|
subdird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 x. ( ( Lam ` n ) / n ) ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
50 |
|
ax-1cn |
|- 1 e. CC |
51 |
35
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. CC ) |
52 |
|
nncan |
|- ( ( 1 e. CC /\ ( .1. ` ( L ` n ) ) e. CC ) -> ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) = ( .1. ` ( L ` n ) ) ) |
53 |
50 51 52
|
sylancr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) = ( .1. ` ( L ` n ) ) ) |
54 |
53
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( 1 - ( .1. ` ( L ` n ) ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
55 |
17
|
mulid2d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. ( ( Lam ` n ) / n ) ) = ( ( Lam ` n ) / n ) ) |
56 |
55
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. ( ( Lam ` n ) / n ) ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) |
57 |
49 54 56
|
3eqtr3rd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
58 |
57
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) - ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
59 |
46 58
|
eqtr3d |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) ) |
60 |
59
|
oveq1d |
|- ( ph -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
61 |
60
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) - ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
62 |
45 61
|
eqtrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) |
63 |
62
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) ) |
64 |
44 63
|
eqtrd |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) ) |
65 |
|
vmadivsum |
|- ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) |
66 |
8
|
a1i |
|- ( ph -> RR+ C_ RR ) |
67 |
|
1red |
|- ( ph -> 1 e. RR ) |
68 |
|
prmdvdsfi |
|- ( N e. NN -> { q e. Prime | q || N } e. Fin ) |
69 |
3 68
|
syl |
|- ( ph -> { q e. Prime | q || N } e. Fin ) |
70 |
|
elrabi |
|- ( p e. { q e. Prime | q || N } -> p e. Prime ) |
71 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
72 |
71
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. NN ) |
73 |
72
|
nnrpd |
|- ( ( ph /\ p e. Prime ) -> p e. RR+ ) |
74 |
73
|
relogcld |
|- ( ( ph /\ p e. Prime ) -> ( log ` p ) e. RR ) |
75 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
76 |
75
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
77 |
|
uz2m1nn |
|- ( p e. ( ZZ>= ` 2 ) -> ( p - 1 ) e. NN ) |
78 |
76 77
|
syl |
|- ( ( ph /\ p e. Prime ) -> ( p - 1 ) e. NN ) |
79 |
74 78
|
nndivred |
|- ( ( ph /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
80 |
70 79
|
sylan2 |
|- ( ( ph /\ p e. { q e. Prime | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
81 |
69 80
|
fsumrecl |
|- ( ph -> sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
82 |
|
fzfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
83 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) = 0 ) |
84 |
|
0re |
|- 0 e. RR |
85 |
83 84
|
eqeltrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) e. RR ) |
86 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
87 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> N e. NN ) |
88 |
4
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
89 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
90 |
5 6
|
grpidcl |
|- ( G e. Grp -> .1. e. D ) |
91 |
3 88 89 90
|
4syl |
|- ( ph -> .1. e. D ) |
92 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> .1. e. D ) |
93 |
34
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( L ` n ) e. ( Base ` Z ) ) |
94 |
4 1 5 25 86 92 93
|
dchrn0 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( .1. ` ( L ` n ) ) =/= 0 <-> ( L ` n ) e. ( Unit ` Z ) ) ) |
95 |
94
|
biimpa |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( L ` n ) e. ( Unit ` Z ) ) |
96 |
4 1 6 86 87 95
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) = 1 ) |
97 |
96 24
|
eqeltrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) e. RR ) |
98 |
85 97
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) e. RR ) |
99 |
24 98 36
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. RR ) |
100 |
16
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
101 |
99 100
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
102 |
82 101
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. RR ) |
103 |
|
0le1 |
|- 0 <_ 1 |
104 |
83 103
|
eqbrtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) = 0 ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
105 |
24
|
leidi |
|- 1 <_ 1 |
106 |
96 105
|
eqbrtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ ( .1. ` ( L ` n ) ) =/= 0 ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
107 |
104 106
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( .1. ` ( L ` n ) ) <_ 1 ) |
108 |
|
subge0 |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` n ) ) e. RR ) -> ( 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) <-> ( .1. ` ( L ` n ) ) <_ 1 ) ) |
109 |
24 98 108
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) <-> ( .1. ` ( L ` n ) ) <_ 1 ) ) |
110 |
107 109
|
mpbird |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( 1 - ( .1. ` ( L ` n ) ) ) ) |
111 |
15
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
112 |
12
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
113 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
114 |
112 113
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) |
115 |
112
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR ) |
116 |
112
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 < n ) |
117 |
|
divge0 |
|- ( ( ( ( Lam ` n ) e. RR /\ 0 <_ ( Lam ` n ) ) /\ ( n e. RR /\ 0 < n ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
118 |
111 114 115 116 117
|
syl22anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( Lam ` n ) / n ) ) |
119 |
99 100 110 118
|
mulge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
120 |
82 101 119
|
fsumge0 |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
121 |
102 120
|
absidd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) |
122 |
69
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. Prime | q || N } e. Fin ) |
123 |
|
inss2 |
|- ( ( 0 [,] x ) i^i Prime ) C_ Prime |
124 |
|
rabss2 |
|- ( ( ( 0 [,] x ) i^i Prime ) C_ Prime -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ { q e. Prime | q || N } ) |
125 |
123 124
|
mp1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ { q e. Prime | q || N } ) |
126 |
122 125
|
ssfid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } e. Fin ) |
127 |
|
ssrab2 |
|- { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ ( ( 0 [,] x ) i^i Prime ) |
128 |
127 123
|
sstri |
|- { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ Prime |
129 |
128
|
sseli |
|- ( p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } -> p e. Prime ) |
130 |
79
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
131 |
129 130
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
132 |
126 131
|
fsumrecl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
133 |
81
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
134 |
|
2fveq3 |
|- ( n = ( p ^ k ) -> ( .1. ` ( L ` n ) ) = ( .1. ` ( L ` ( p ^ k ) ) ) ) |
135 |
134
|
oveq2d |
|- ( n = ( p ^ k ) -> ( 1 - ( .1. ` ( L ` n ) ) ) = ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) ) |
136 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
137 |
|
id |
|- ( n = ( p ^ k ) -> n = ( p ^ k ) ) |
138 |
136 137
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( Lam ` n ) / n ) = ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
139 |
135 138
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
140 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
141 |
140
|
ad2antrl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR ) |
142 |
39
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
143 |
|
simprr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
144 |
143
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) / n ) = ( 0 / n ) ) |
145 |
12
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. NN ) |
146 |
145
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. CC ) |
147 |
145
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> n =/= 0 ) |
148 |
146 147
|
div0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( 0 / n ) = 0 ) |
149 |
144 148
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) / n ) = 0 ) |
150 |
149
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = ( ( 1 - ( .1. ` ( L ` n ) ) ) x. 0 ) ) |
151 |
48
|
ad2ant2r |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( 1 - ( .1. ` ( L ` n ) ) ) e. CC ) |
152 |
151
|
mul01d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. 0 ) = 0 ) |
153 |
150 152
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( n e. ( 1 ... ( |_ ` x ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = 0 ) |
154 |
139 141 142 153
|
fsumvma2 |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ p e. ( ( 0 [,] x ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
155 |
127
|
a1i |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } C_ ( ( 0 [,] x ) i^i Prime ) ) |
156 |
|
fzfid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) |
157 |
26
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> .1. : ( Base ` Z ) --> RR ) |
158 |
31
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> L : ZZ --> ( Base ` Z ) ) |
159 |
71
|
ad2antrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. NN ) |
160 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) -> k e. NN ) |
161 |
160
|
ad2antll |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. NN ) |
162 |
161
|
nnnn0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. NN0 ) |
163 |
159 162
|
nnexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. NN ) |
164 |
163
|
nnzd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
165 |
158 164
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( L ` ( p ^ k ) ) e. ( Base ` Z ) ) |
166 |
157 165
|
ffvelrnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) |
167 |
|
resubcl |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) e. RR ) |
168 |
24 166 167
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) e. RR ) |
169 |
|
vmacl |
|- ( ( p ^ k ) e. NN -> ( Lam ` ( p ^ k ) ) e. RR ) |
170 |
163 169
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) e. RR ) |
171 |
170 163
|
nndivred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. RR ) |
172 |
168 171
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
173 |
172
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
174 |
173
|
recnd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
175 |
156 174
|
fsumcl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
176 |
129 175
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. CC ) |
177 |
|
breq1 |
|- ( q = p -> ( q || N <-> p || N ) ) |
178 |
177
|
notbid |
|- ( q = p -> ( -. q || N <-> -. p || N ) ) |
179 |
|
notrab |
|- ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) = { q e. ( ( 0 [,] x ) i^i Prime ) | -. q || N } |
180 |
178 179
|
elrab2 |
|- ( p e. ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) <-> ( p e. ( ( 0 [,] x ) i^i Prime ) /\ -. p || N ) ) |
181 |
123
|
sseli |
|- ( p e. ( ( 0 [,] x ) i^i Prime ) -> p e. Prime ) |
182 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. NN ) |
183 |
|
simplrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> -. p || N ) |
184 |
|
simplrl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> p e. Prime ) |
185 |
182
|
nnzd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. ZZ ) |
186 |
|
coprm |
|- ( ( p e. Prime /\ N e. ZZ ) -> ( -. p || N <-> ( p gcd N ) = 1 ) ) |
187 |
184 185 186
|
syl2anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( -. p || N <-> ( p gcd N ) = 1 ) ) |
188 |
183 187
|
mpbid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p gcd N ) = 1 ) |
189 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
190 |
184 189
|
syl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> p e. ZZ ) |
191 |
160
|
adantl |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> k e. NN ) |
192 |
191
|
nnnn0d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> k e. NN0 ) |
193 |
|
rpexp1i |
|- ( ( p e. ZZ /\ N e. ZZ /\ k e. NN0 ) -> ( ( p gcd N ) = 1 -> ( ( p ^ k ) gcd N ) = 1 ) ) |
194 |
190 185 192 193
|
syl3anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( p gcd N ) = 1 -> ( ( p ^ k ) gcd N ) = 1 ) ) |
195 |
188 194
|
mpd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( p ^ k ) gcd N ) = 1 ) |
196 |
182
|
nnnn0d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> N e. NN0 ) |
197 |
164
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
198 |
197
|
adantlrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( p ^ k ) e. ZZ ) |
199 |
1 86 2
|
znunit |
|- ( ( N e. NN0 /\ ( p ^ k ) e. ZZ ) -> ( ( L ` ( p ^ k ) ) e. ( Unit ` Z ) <-> ( ( p ^ k ) gcd N ) = 1 ) ) |
200 |
196 198 199
|
syl2anc |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( L ` ( p ^ k ) ) e. ( Unit ` Z ) <-> ( ( p ^ k ) gcd N ) = 1 ) ) |
201 |
195 200
|
mpbird |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) |
202 |
4 1 6 86 182 201
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 1 ) |
203 |
202
|
oveq2d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) = ( 1 - 1 ) ) |
204 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
205 |
203 204
|
eqtrdi |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) = 0 ) |
206 |
205
|
oveq1d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( 0 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
207 |
171
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
208 |
207
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
209 |
208
|
adantlrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) e. CC ) |
210 |
209
|
mul02d |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( 0 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
211 |
206 210
|
eqtrd |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
212 |
211
|
sumeq2dv |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 ) |
213 |
|
fzfid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) |
214 |
213
|
olcd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> ( ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) ) |
215 |
|
sumz |
|- ( ( ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) e. Fin ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 = 0 ) |
216 |
214 215
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) 0 = 0 ) |
217 |
212 216
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
218 |
181 217
|
sylanr1 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. ( ( 0 [,] x ) i^i Prime ) /\ -. p || N ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
219 |
180 218
|
sylan2b |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. ( ( ( 0 [,] x ) i^i Prime ) \ { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = 0 ) |
220 |
|
ppifi |
|- ( x e. RR -> ( ( 0 [,] x ) i^i Prime ) e. Fin ) |
221 |
141 220
|
syl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( ( 0 [,] x ) i^i Prime ) e. Fin ) |
222 |
155 176 219 221
|
fsumss |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = sum_ p e. ( ( 0 [,] x ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
223 |
154 222
|
eqtr4d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) = sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
224 |
156 173
|
fsumrecl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
225 |
129 224
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) e. RR ) |
226 |
74
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. RR ) |
227 |
71
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. NN ) |
228 |
227
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. RR ) |
229 |
227
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. RR+ ) |
230 |
229
|
rpreccld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. RR+ ) |
231 |
|
simplrl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> x e. RR+ ) |
232 |
231
|
relogcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` x ) e. RR ) |
233 |
227
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. RR ) |
234 |
75
|
adantl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. ( ZZ>= ` 2 ) ) |
235 |
|
eluz2gt1 |
|- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
236 |
234 235
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 < p ) |
237 |
233 236
|
rplogcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. RR+ ) |
238 |
232 237
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` x ) / ( log ` p ) ) e. RR ) |
239 |
238
|
flcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. ZZ ) |
240 |
239
|
peano2zd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. ZZ ) |
241 |
230 240
|
rpexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) e. RR+ ) |
242 |
241
|
rpred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) e. RR ) |
243 |
228 242
|
resubcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) e. RR ) |
244 |
234 77
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. NN ) |
245 |
244
|
nnrpd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. RR+ ) |
246 |
245 229
|
rpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) / p ) e. RR+ ) |
247 |
243 246
|
rerpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) e. RR ) |
248 |
226 247
|
remulcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) e. RR ) |
249 |
170
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) e. CC ) |
250 |
163
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. CC ) |
251 |
163
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) =/= 0 ) |
252 |
249 250 251
|
divrecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) = ( ( Lam ` ( p ^ k ) ) x. ( 1 / ( p ^ k ) ) ) ) |
253 |
|
simprl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. Prime ) |
254 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
255 |
253 161 254
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
256 |
159
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p e. CC ) |
257 |
159
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> p =/= 0 ) |
258 |
|
elfzelz |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) -> k e. ZZ ) |
259 |
258
|
ad2antll |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> k e. ZZ ) |
260 |
256 257 259
|
exprecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) = ( 1 / ( p ^ k ) ) ) |
261 |
260
|
eqcomd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 / ( p ^ k ) ) = ( ( 1 / p ) ^ k ) ) |
262 |
255 261
|
oveq12d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) x. ( 1 / ( p ^ k ) ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
263 |
252 262
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
264 |
263 171
|
eqeltrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) e. RR ) |
265 |
264
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) e. RR ) |
266 |
|
1red |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 1 e. RR ) |
267 |
|
vmage0 |
|- ( ( p ^ k ) e. NN -> 0 <_ ( Lam ` ( p ^ k ) ) ) |
268 |
163 267
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( Lam ` ( p ^ k ) ) ) |
269 |
163
|
nnred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. RR ) |
270 |
163
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 < ( p ^ k ) ) |
271 |
|
divge0 |
|- ( ( ( ( Lam ` ( p ^ k ) ) e. RR /\ 0 <_ ( Lam ` ( p ^ k ) ) ) /\ ( ( p ^ k ) e. RR /\ 0 < ( p ^ k ) ) ) -> 0 <_ ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
272 |
170 268 269 270 271
|
syl22anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
273 |
84
|
leidi |
|- 0 <_ 0 |
274 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) |
275 |
273 274
|
breqtrrid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) = 0 ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
276 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> N e. NN ) |
277 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> .1. e. D ) |
278 |
4 1 5 25 86 277 165
|
dchrn0 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 <-> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) ) |
279 |
278
|
biimpa |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> ( L ` ( p ^ k ) ) e. ( Unit ` Z ) ) |
280 |
4 1 6 86 276 279
|
dchr1 |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> ( .1. ` ( L ` ( p ^ k ) ) ) = 1 ) |
281 |
103 280
|
breqtrrid |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) /\ ( .1. ` ( L ` ( p ^ k ) ) ) =/= 0 ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
282 |
275 281
|
pm2.61dane |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) ) |
283 |
|
subge02 |
|- ( ( 1 e. RR /\ ( .1. ` ( L ` ( p ^ k ) ) ) e. RR ) -> ( 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) <-> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) ) |
284 |
24 166 283
|
sylancr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 0 <_ ( .1. ` ( L ` ( p ^ k ) ) ) <-> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) ) |
285 |
282 284
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) <_ 1 ) |
286 |
168 266 171 272 285
|
lemul1ad |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) ) |
287 |
207
|
mulid2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) |
288 |
287 263
|
eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
289 |
286 288
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
290 |
289
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
291 |
156 173 265 290
|
fsumle |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
292 |
226
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( log ` p ) e. CC ) |
293 |
159
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( 1 / p ) e. RR ) |
294 |
293 162
|
reexpcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. RR ) |
295 |
294
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ ( p e. Prime /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. CC ) |
296 |
295
|
anassrs |
|- ( ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. CC ) |
297 |
156 292 296
|
fsummulc2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
298 |
|
fzval3 |
|- ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. ZZ -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) = ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
299 |
239 298
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) = ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
300 |
299
|
sumeq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = sum_ k e. ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) ) |
301 |
228
|
recnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) e. CC ) |
302 |
227
|
nngt0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 < p ) |
303 |
|
recgt1 |
|- ( ( p e. RR /\ 0 < p ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
304 |
233 302 303
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
305 |
236 304
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) < 1 ) |
306 |
228 305
|
ltned |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / p ) =/= 1 ) |
307 |
|
1nn0 |
|- 1 e. NN0 |
308 |
307
|
a1i |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 e. NN0 ) |
309 |
|
log1 |
|- ( log ` 1 ) = 0 |
310 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
311 |
|
1rp |
|- 1 e. RR+ |
312 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
313 |
|
logleb |
|- ( ( 1 e. RR+ /\ x e. RR+ ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
314 |
311 312 313
|
sylancr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( 1 <_ x <-> ( log ` 1 ) <_ ( log ` x ) ) ) |
315 |
310 314
|
mpbid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( log ` 1 ) <_ ( log ` x ) ) |
316 |
309 315
|
eqbrtrrid |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 0 <_ ( log ` x ) ) |
317 |
316
|
adantr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( log ` x ) ) |
318 |
232 237 317
|
divge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( log ` x ) / ( log ` p ) ) ) |
319 |
|
flge0nn0 |
|- ( ( ( ( log ` x ) / ( log ` p ) ) e. RR /\ 0 <_ ( ( log ` x ) / ( log ` p ) ) ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 ) |
320 |
238 318 319
|
syl2anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 ) |
321 |
|
nn0p1nn |
|- ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) e. NN0 -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. NN ) |
322 |
320 321
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. NN ) |
323 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
324 |
322 323
|
eleqtrdi |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) e. ( ZZ>= ` 1 ) ) |
325 |
301 306 308 324
|
geoserg |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ..^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) = ( ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) |
326 |
301
|
exp1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) ^ 1 ) = ( 1 / p ) ) |
327 |
326
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) = ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) ) |
328 |
227
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> p e. CC ) |
329 |
|
1cnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 1 e. CC ) |
330 |
229
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p e. CC /\ p =/= 0 ) ) |
331 |
|
divsubdir |
|- ( ( p e. CC /\ 1 e. CC /\ ( p e. CC /\ p =/= 0 ) ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
332 |
328 329 330 331
|
syl3anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
333 |
|
divid |
|- ( ( p e. CC /\ p =/= 0 ) -> ( p / p ) = 1 ) |
334 |
330 333
|
syl |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p / p ) = 1 ) |
335 |
334
|
oveq1d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p / p ) - ( 1 / p ) ) = ( 1 - ( 1 / p ) ) ) |
336 |
332 335
|
eqtr2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 - ( 1 / p ) ) = ( ( p - 1 ) / p ) ) |
337 |
327 336
|
oveq12d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) ^ 1 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) = ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) |
338 |
300 325 337
|
3eqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) |
339 |
338
|
oveq2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
340 |
297 339
|
eqtr3d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
341 |
291 340
|
breqtrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) ) |
342 |
241
|
rpge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) |
343 |
228 242
|
subge02d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) <-> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( 1 / p ) ) ) |
344 |
342 343
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( 1 / p ) ) |
345 |
245
|
rpcnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) ) |
346 |
|
dmdcan |
|- ( ( ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) /\ ( p e. CC /\ p =/= 0 ) /\ 1 e. CC ) -> ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) = ( 1 / p ) ) |
347 |
345 330 329 346
|
syl3anc |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) = ( 1 / p ) ) |
348 |
344 347
|
breqtrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) ) |
349 |
244
|
nnrecred |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( 1 / ( p - 1 ) ) e. RR ) |
350 |
243 349 246
|
ledivmuld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) <-> ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( ( p - 1 ) / p ) x. ( 1 / ( p - 1 ) ) ) ) ) |
351 |
348 350
|
mpbird |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) ) |
352 |
247 349 237
|
lemul2d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) <_ ( 1 / ( p - 1 ) ) <-> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) ) |
353 |
351 352
|
mpbid |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) |
354 |
244
|
nncnd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) e. CC ) |
355 |
244
|
nnne0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( p - 1 ) =/= 0 ) |
356 |
292 354 355
|
divrecd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) = ( ( log ` p ) x. ( 1 / ( p - 1 ) ) ) ) |
357 |
353 356
|
breqtrrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) x. ( ( ( 1 / p ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) + 1 ) ) ) / ( ( p - 1 ) / p ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
358 |
224 248 130 341 357
|
letrd |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
359 |
129 358
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ ( ( log ` p ) / ( p - 1 ) ) ) |
360 |
126 225 131 359
|
fsumle |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } sum_ k e. ( 1 ... ( |_ ` ( ( log ` x ) / ( log ` p ) ) ) ) ( ( 1 - ( .1. ` ( L ` ( p ^ k ) ) ) ) x. ( ( Lam ` ( p ^ k ) ) / ( p ^ k ) ) ) <_ sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
361 |
223 360
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) <_ sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
362 |
80
|
adantlr |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. Prime | q || N } ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR ) |
363 |
237 245
|
rpdivcld |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> ( ( log ` p ) / ( p - 1 ) ) e. RR+ ) |
364 |
363
|
rpge0d |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. Prime ) -> 0 <_ ( ( log ` p ) / ( p - 1 ) ) ) |
365 |
70 364
|
sylan2 |
|- ( ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) /\ p e. { q e. Prime | q || N } ) -> 0 <_ ( ( log ` p ) / ( p - 1 ) ) ) |
366 |
122 362 365 125
|
fsumless |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ p e. { q e. ( ( 0 [,] x ) i^i Prime ) | q || N } ( ( log ` p ) / ( p - 1 ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
367 |
102 132 133 361 366
|
letrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
368 |
121 367
|
eqbrtrd |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) <_ sum_ p e. { q e. Prime | q || N } ( ( log ` p ) / ( p - 1 ) ) ) |
369 |
66 41 67 81 368
|
elo1d |
|- ( ph -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) e. O(1) ) |
370 |
|
o1sub |
|- ( ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) /\ ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) e. O(1) ) -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) e. O(1) ) |
371 |
65 369 370
|
sylancr |
|- ( ph -> ( ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) oF - ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( 1 - ( .1. ` ( L ` n ) ) ) x. ( ( Lam ` n ) / n ) ) ) ) e. O(1) ) |
372 |
64 371
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( .1. ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |