| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrgval.e |
|- E = ( RLReg ` R ) |
| 2 |
|
rrgval.b |
|- B = ( Base ` R ) |
| 3 |
|
rrgval.t |
|- .x. = ( .r ` R ) |
| 4 |
|
rrgval.z |
|- .0. = ( 0g ` R ) |
| 5 |
1 2 3 4
|
rrgeq0i |
|- ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 6 |
5
|
3adant1 |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |
| 7 |
|
simp1 |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> R e. Ring ) |
| 8 |
1 2 3 4
|
rrgval |
|- E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |
| 9 |
8
|
ssrab3 |
|- E C_ B |
| 10 |
|
simp2 |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. E ) |
| 11 |
9 10
|
sselid |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. B ) |
| 12 |
2 3 4
|
ringrz |
|- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) |
| 13 |
7 11 12
|
syl2anc |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( X .x. .0. ) = .0. ) |
| 14 |
|
oveq2 |
|- ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) ) |
| 15 |
14
|
eqeq1d |
|- ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) ) |
| 16 |
13 15
|
syl5ibrcom |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( Y = .0. -> ( X .x. Y ) = .0. ) ) |
| 17 |
6 16
|
impbid |
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |