Metamath Proof Explorer


Theorem rrgeq0

Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses rrgval.e
|- E = ( RLReg ` R )
rrgval.b
|- B = ( Base ` R )
rrgval.t
|- .x. = ( .r ` R )
rrgval.z
|- .0. = ( 0g ` R )
Assertion rrgeq0
|- ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> Y = .0. ) )

Proof

Step Hyp Ref Expression
1 rrgval.e
 |-  E = ( RLReg ` R )
2 rrgval.b
 |-  B = ( Base ` R )
3 rrgval.t
 |-  .x. = ( .r ` R )
4 rrgval.z
 |-  .0. = ( 0g ` R )
5 1 2 3 4 rrgeq0i
 |-  ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) )
6 5 3adant1
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) )
7 simp1
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> R e. Ring )
8 1 2 3 4 rrgval
 |-  E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) }
9 8 ssrab3
 |-  E C_ B
10 simp2
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. E )
11 9 10 sselid
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> X e. B )
12 2 3 4 ringrz
 |-  ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. )
13 7 11 12 syl2anc
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( X .x. .0. ) = .0. )
14 oveq2
 |-  ( Y = .0. -> ( X .x. Y ) = ( X .x. .0. ) )
15 14 eqeq1d
 |-  ( Y = .0. -> ( ( X .x. Y ) = .0. <-> ( X .x. .0. ) = .0. ) )
16 13 15 syl5ibrcom
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( Y = .0. -> ( X .x. Y ) = .0. ) )
17 6 16 impbid
 |-  ( ( R e. Ring /\ X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. <-> Y = .0. ) )