Step |
Hyp |
Ref |
Expression |
1 |
|
rrgval.e |
|- E = ( RLReg ` R ) |
2 |
|
rrgval.b |
|- B = ( Base ` R ) |
3 |
|
rrgval.t |
|- .x. = ( .r ` R ) |
4 |
|
rrgval.z |
|- .0. = ( 0g ` R ) |
5 |
1 2 3 4
|
isrrg |
|- ( X e. E <-> ( X e. B /\ A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) ) |
6 |
5
|
simprbi |
|- ( X e. E -> A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) ) |
7 |
|
oveq2 |
|- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
8 |
7
|
eqeq1d |
|- ( y = Y -> ( ( X .x. y ) = .0. <-> ( X .x. Y ) = .0. ) ) |
9 |
|
eqeq1 |
|- ( y = Y -> ( y = .0. <-> Y = .0. ) ) |
10 |
8 9
|
imbi12d |
|- ( y = Y -> ( ( ( X .x. y ) = .0. -> y = .0. ) <-> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
11 |
10
|
rspcv |
|- ( Y e. B -> ( A. y e. B ( ( X .x. y ) = .0. -> y = .0. ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) ) |
12 |
6 11
|
mpan9 |
|- ( ( X e. E /\ Y e. B ) -> ( ( X .x. Y ) = .0. -> Y = .0. ) ) |