Metamath Proof Explorer


Theorem rrgss

Description: Left-regular elements are a subset of the base set. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgss.e
|- E = ( RLReg ` R )
rrgss.b
|- B = ( Base ` R )
Assertion rrgss
|- E C_ B

Proof

Step Hyp Ref Expression
1 rrgss.e
 |-  E = ( RLReg ` R )
2 rrgss.b
 |-  B = ( Base ` R )
3 eqid
 |-  ( .r ` R ) = ( .r ` R )
4 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
5 1 2 3 4 rrgval
 |-  E = { x e. B | A. y e. B ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) }
6 5 ssrab3
 |-  E C_ B