Step |
Hyp |
Ref |
Expression |
1 |
|
rrgval.e |
|- E = ( RLReg ` R ) |
2 |
|
rrgval.b |
|- B = ( Base ` R ) |
3 |
|
rrgval.t |
|- .x. = ( .r ` R ) |
4 |
|
rrgval.z |
|- .0. = ( 0g ` R ) |
5 |
|
rrgsupp.i |
|- ( ph -> I e. V ) |
6 |
|
rrgsupp.r |
|- ( ph -> R e. Ring ) |
7 |
|
rrgsupp.x |
|- ( ph -> X e. E ) |
8 |
|
rrgsupp.y |
|- ( ph -> Y : I --> B ) |
9 |
7
|
adantr |
|- ( ( ph /\ y e. I ) -> X e. E ) |
10 |
|
fvexd |
|- ( ( ph /\ y e. I ) -> ( Y ` y ) e. _V ) |
11 |
|
fconstmpt |
|- ( I X. { X } ) = ( y e. I |-> X ) |
12 |
11
|
a1i |
|- ( ph -> ( I X. { X } ) = ( y e. I |-> X ) ) |
13 |
8
|
feqmptd |
|- ( ph -> Y = ( y e. I |-> ( Y ` y ) ) ) |
14 |
5 9 10 12 13
|
offval2 |
|- ( ph -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ x e. I ) -> ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) ) |
16 |
15
|
fveq1d |
|- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) ) |
17 |
|
simpr |
|- ( ( ph /\ x e. I ) -> x e. I ) |
18 |
|
ovex |
|- ( X .x. ( Y ` x ) ) e. _V |
19 |
|
fveq2 |
|- ( y = x -> ( Y ` y ) = ( Y ` x ) ) |
20 |
19
|
oveq2d |
|- ( y = x -> ( X .x. ( Y ` y ) ) = ( X .x. ( Y ` x ) ) ) |
21 |
|
eqid |
|- ( y e. I |-> ( X .x. ( Y ` y ) ) ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) |
22 |
20 21
|
fvmptg |
|- ( ( x e. I /\ ( X .x. ( Y ` x ) ) e. _V ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
23 |
17 18 22
|
sylancl |
|- ( ( ph /\ x e. I ) -> ( ( y e. I |-> ( X .x. ( Y ` y ) ) ) ` x ) = ( X .x. ( Y ` x ) ) ) |
24 |
16 23
|
eqtrd |
|- ( ( ph /\ x e. I ) -> ( ( ( I X. { X } ) oF .x. Y ) ` x ) = ( X .x. ( Y ` x ) ) ) |
25 |
24
|
neeq1d |
|- ( ( ph /\ x e. I ) -> ( ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. <-> ( X .x. ( Y ` x ) ) =/= .0. ) ) |
26 |
25
|
rabbidva |
|- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } ) |
27 |
6
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. Ring ) |
28 |
7
|
adantr |
|- ( ( ph /\ x e. I ) -> X e. E ) |
29 |
8
|
ffvelrnda |
|- ( ( ph /\ x e. I ) -> ( Y ` x ) e. B ) |
30 |
1 2 3 4
|
rrgeq0 |
|- ( ( R e. Ring /\ X e. E /\ ( Y ` x ) e. B ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
31 |
27 28 29 30
|
syl3anc |
|- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) = .0. <-> ( Y ` x ) = .0. ) ) |
32 |
31
|
necon3bid |
|- ( ( ph /\ x e. I ) -> ( ( X .x. ( Y ` x ) ) =/= .0. <-> ( Y ` x ) =/= .0. ) ) |
33 |
32
|
rabbidva |
|- ( ph -> { x e. I | ( X .x. ( Y ` x ) ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
34 |
26 33
|
eqtrd |
|- ( ph -> { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } = { x e. I | ( Y ` x ) =/= .0. } ) |
35 |
|
ovex |
|- ( X .x. ( Y ` y ) ) e. _V |
36 |
35 21
|
fnmpti |
|- ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I |
37 |
|
fneq1 |
|- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( ( I X. { X } ) oF .x. Y ) Fn I <-> ( y e. I |-> ( X .x. ( Y ` y ) ) ) Fn I ) ) |
38 |
36 37
|
mpbiri |
|- ( ( ( I X. { X } ) oF .x. Y ) = ( y e. I |-> ( X .x. ( Y ` y ) ) ) -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
39 |
14 38
|
syl |
|- ( ph -> ( ( I X. { X } ) oF .x. Y ) Fn I ) |
40 |
4
|
fvexi |
|- .0. e. _V |
41 |
40
|
a1i |
|- ( ph -> .0. e. _V ) |
42 |
|
suppvalfn |
|- ( ( ( ( I X. { X } ) oF .x. Y ) Fn I /\ I e. V /\ .0. e. _V ) -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
43 |
39 5 41 42
|
syl3anc |
|- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = { x e. I | ( ( ( I X. { X } ) oF .x. Y ) ` x ) =/= .0. } ) |
44 |
8
|
ffnd |
|- ( ph -> Y Fn I ) |
45 |
|
suppvalfn |
|- ( ( Y Fn I /\ I e. V /\ .0. e. _V ) -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
46 |
44 5 41 45
|
syl3anc |
|- ( ph -> ( Y supp .0. ) = { x e. I | ( Y ` x ) =/= .0. } ) |
47 |
34 43 46
|
3eqtr4d |
|- ( ph -> ( ( ( I X. { X } ) oF .x. Y ) supp .0. ) = ( Y supp .0. ) ) |