Step |
Hyp |
Ref |
Expression |
1 |
|
rrncms.1 |
|- X = ( RR ^m I ) |
2 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
3 |
|
eqid |
|- ( MetOpen ` ( Rn ` I ) ) = ( MetOpen ` ( Rn ` I ) ) |
4 |
|
simpll |
|- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> I e. Fin ) |
5 |
|
simplr |
|- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. ( Cau ` ( Rn ` I ) ) ) |
6 |
|
simpr |
|- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f : NN --> X ) |
7 |
|
eqid |
|- ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) ) = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) ) |
8 |
1 2 3 4 5 6 7
|
rrncmslem |
|- ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) |
9 |
8
|
ex |
|- ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) |
10 |
9
|
ralrimiva |
|- ( I e. Fin -> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) |
11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
12 |
|
1zzd |
|- ( I e. Fin -> 1 e. ZZ ) |
13 |
1
|
rrnmet |
|- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
14 |
11 3 12 13
|
iscmet3 |
|- ( I e. Fin -> ( ( Rn ` I ) e. ( CMet ` X ) <-> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) ) |
15 |
10 14
|
mpbird |
|- ( I e. Fin -> ( Rn ` I ) e. ( CMet ` X ) ) |