| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrncms.1 | 
							 |-  X = ( RR ^m I )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( MetOpen ` ( Rn ` I ) ) = ( MetOpen ` ( Rn ` I ) )  | 
						
						
							| 4 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> I e. Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. ( Cau ` ( Rn ` I ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f : NN --> X )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) ) = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( f ` t ) ` m ) ) ) )  | 
						
						
							| 8 | 
							
								1 2 3 4 5 6 7
							 | 
							rrncmslem | 
							 |-  ( ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							 |-  ( ( I e. Fin /\ f e. ( Cau ` ( Rn ` I ) ) ) -> ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralrimiva | 
							 |-  ( I e. Fin -> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 12 | 
							
								
							 | 
							1zzd | 
							 |-  ( I e. Fin -> 1 e. ZZ )  | 
						
						
							| 13 | 
							
								1
							 | 
							rrnmet | 
							 |-  ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) )  | 
						
						
							| 14 | 
							
								11 3 12 13
							 | 
							iscmet3 | 
							 |-  ( I e. Fin -> ( ( Rn ` I ) e. ( CMet ` X ) <-> A. f e. ( Cau ` ( Rn ` I ) ) ( f : NN --> X -> f e. dom ( ~~>t ` ( MetOpen ` ( Rn ` I ) ) ) ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							mpbird | 
							 |-  ( I e. Fin -> ( Rn ` I ) e. ( CMet ` X ) )  |