| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							rrnval.1 | 
							 |-  X = ( RR ^m I )  | 
						
						
							| 2 | 
							
								
							 | 
							rrndstprj1.1 | 
							 |-  M = ( ( abs o. - ) |` ( RR X. RR ) )  | 
						
						
							| 3 | 
							
								
							 | 
							rrncms.3 | 
							 |-  J = ( MetOpen ` ( Rn ` I ) )  | 
						
						
							| 4 | 
							
								
							 | 
							rrncms.4 | 
							 |-  ( ph -> I e. Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							rrncms.5 | 
							 |-  ( ph -> F e. ( Cau ` ( Rn ` I ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							rrncms.6 | 
							 |-  ( ph -> F : NN --> X )  | 
						
						
							| 7 | 
							
								
							 | 
							rrncms.7 | 
							 |-  P = ( m e. I |-> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							lmrel | 
							 |-  Rel ( ~~>t ` J )  | 
						
						
							| 9 | 
							
								
							 | 
							fvex | 
							 |-  ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) e. _V  | 
						
						
							| 10 | 
							
								9 7
							 | 
							fnmpti | 
							 |-  P Fn I  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							 |-  ( ph -> P Fn I )  | 
						
						
							| 12 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 13 | 
							
								
							 | 
							1zzd | 
							 |-  ( ( ph /\ n e. I ) -> 1 e. ZZ )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							 |-  ( t = k -> ( F ` t ) = ( F ` k ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq1d | 
							 |-  ( t = k -> ( ( F ` t ) ` n ) = ( ( F ` k ) ` n ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( t e. NN |-> ( ( F ` t ) ` n ) ) = ( t e. NN |-> ( ( F ` t ) ` n ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fvex | 
							 |-  ( ( F ` k ) ` n ) e. _V  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							fvmpt | 
							 |-  ( k e. NN -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. X )  | 
						
						
							| 21 | 
							
								20 1
							 | 
							eleqtrdi | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. ( RR ^m I ) )  | 
						
						
							| 22 | 
							
								
							 | 
							elmapi | 
							 |-  ( ( F ` k ) e. ( RR ^m I ) -> ( F ` k ) : I --> RR )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) : I --> RR )  | 
						
						
							| 24 | 
							
								23
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ k e. NN ) /\ n e. I ) -> ( ( F ` k ) ` n ) e. RR )  | 
						
						
							| 25 | 
							
								24
							 | 
							an32s | 
							 |-  ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( F ` k ) ` n ) e. RR )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) e. RR )  | 
						
						
							| 27 | 
							
								26
							 | 
							recnd | 
							 |-  ( ( ( ph /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) e. CC )  | 
						
						
							| 28 | 
							
								1
							 | 
							rrnmet | 
							 |-  ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							syl | 
							 |-  ( ph -> ( Rn ` I ) e. ( Met ` X ) )  | 
						
						
							| 30 | 
							
								
							 | 
							metxmet | 
							 |-  ( ( Rn ` I ) e. ( Met ` X ) -> ( Rn ` I ) e. ( *Met ` X ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							 |-  ( ph -> ( Rn ` I ) e. ( *Met ` X ) )  | 
						
						
							| 32 | 
							
								
							 | 
							1zzd | 
							 |-  ( ph -> 1 e. ZZ )  | 
						
						
							| 33 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = ( F ` k ) )  | 
						
						
							| 34 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ j e. NN ) -> ( F ` j ) = ( F ` j ) )  | 
						
						
							| 35 | 
							
								12 31 32 33 34 6
							 | 
							iscauf | 
							 |-  ( ph -> ( F e. ( Cau ` ( Rn ` I ) ) <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) )  | 
						
						
							| 36 | 
							
								5 35
							 | 
							mpbid | 
							 |-  ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							 |-  ( ( ph /\ n e. I ) -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x )  | 
						
						
							| 38 | 
							
								4
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> I e. Fin )  | 
						
						
							| 39 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> n e. I )  | 
						
						
							| 40 | 
							
								6
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> F : NN --> X )  | 
						
						
							| 41 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( j e. NN /\ k e. ( ZZ>= ` j ) ) -> k e. NN )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantll | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> k e. NN )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` k ) e. X )  | 
						
						
							| 44 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> j e. NN )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( F ` j ) e. X )  | 
						
						
							| 46 | 
							
								1 2
							 | 
							rrndstprj1 | 
							 |-  ( ( ( I e. Fin /\ n e. I ) /\ ( ( F ` k ) e. X /\ ( F ` j ) e. X ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) )  | 
						
						
							| 47 | 
							
								38 39 43 45 46
							 | 
							syl22anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) )  | 
						
						
							| 48 | 
							
								29
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( Rn ` I ) e. ( Met ` X ) )  | 
						
						
							| 49 | 
							
								
							 | 
							metsym | 
							 |-  ( ( ( Rn ` I ) e. ( Met ` X ) /\ ( F ` k ) e. X /\ ( F ` j ) e. X ) -> ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) = ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) )  | 
						
						
							| 50 | 
							
								48 43 45 49
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) ( Rn ` I ) ( F ` j ) ) = ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							breqtrd | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantllr | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) )  | 
						
						
							| 53 | 
							
								2
							 | 
							remet | 
							 |-  M e. ( Met ` RR )  | 
						
						
							| 54 | 
							
								53
							 | 
							a1i | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> M e. ( Met ` RR ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ph /\ n e. I ) )  | 
						
						
							| 56 | 
							
								55 42 25
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` k ) ` n ) e. RR )  | 
						
						
							| 57 | 
							
								6
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ j e. NN ) -> ( F ` j ) e. X )  | 
						
						
							| 58 | 
							
								57 1
							 | 
							eleqtrdi | 
							 |-  ( ( ph /\ j e. NN ) -> ( F ` j ) e. ( RR ^m I ) )  | 
						
						
							| 59 | 
							
								
							 | 
							elmapi | 
							 |-  ( ( F ` j ) e. ( RR ^m I ) -> ( F ` j ) : I --> RR )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							syl | 
							 |-  ( ( ph /\ j e. NN ) -> ( F ` j ) : I --> RR )  | 
						
						
							| 61 | 
							
								60
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ j e. NN ) /\ n e. I ) -> ( ( F ` j ) ` n ) e. RR )  | 
						
						
							| 62 | 
							
								61
							 | 
							an32s | 
							 |-  ( ( ( ph /\ n e. I ) /\ j e. NN ) -> ( ( F ` j ) ` n ) e. RR )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ` n ) e. RR )  | 
						
						
							| 64 | 
							
								
							 | 
							metcl | 
							 |-  ( ( M e. ( Met ` RR ) /\ ( ( F ` k ) ` n ) e. RR /\ ( ( F ` j ) ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR )  | 
						
						
							| 65 | 
							
								54 56 63 64
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantllr | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR )  | 
						
						
							| 67 | 
							
								
							 | 
							metcl | 
							 |-  ( ( ( Rn ` I ) e. ( Met ` X ) /\ ( F ` j ) e. X /\ ( F ` k ) e. X ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR )  | 
						
						
							| 68 | 
							
								48 45 43 67
							 | 
							syl3anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantllr | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR )  | 
						
						
							| 70 | 
							
								
							 | 
							rpre | 
							 |-  ( x e. RR+ -> x e. RR )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantl | 
							 |-  ( ( ( ph /\ n e. I ) /\ x e. RR+ ) -> x e. RR )  | 
						
						
							| 72 | 
							
								71
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> x e. RR )  | 
						
						
							| 73 | 
							
								
							 | 
							lelttr | 
							 |-  ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) e. RR /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) e. RR /\ x e. RR ) -> ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 74 | 
							
								66 69 72 73
							 | 
							syl3anc | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) <_ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) /\ ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 75 | 
							
								52 74
							 | 
							mpand | 
							 |-  ( ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							ralimdva | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ x e. RR+ ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							reximdva | 
							 |-  ( ( ( ph /\ n e. I ) /\ x e. RR+ ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							ralimdva | 
							 |-  ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x ) )  | 
						
						
							| 79 | 
							
								2
							 | 
							remetdval | 
							 |-  ( ( ( ( F ` k ) ` n ) e. RR /\ ( ( F ` j ) ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) )  | 
						
						
							| 80 | 
							
								56 63 79
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) )  | 
						
						
							| 81 | 
							
								42 18
							 | 
							syl | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) )  | 
						
						
							| 82 | 
							
								
							 | 
							fveq2 | 
							 |-  ( t = j -> ( F ` t ) = ( F ` j ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							fveq1d | 
							 |-  ( t = j -> ( ( F ` t ) ` n ) = ( ( F ` j ) ` n ) )  | 
						
						
							| 84 | 
							
								
							 | 
							fvex | 
							 |-  ( ( F ` j ) ` n ) e. _V  | 
						
						
							| 85 | 
							
								83 16 84
							 | 
							fvmpt | 
							 |-  ( j e. NN -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) = ( ( F ` j ) ` n ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							ad2antlr | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) = ( ( F ` j ) ` n ) )  | 
						
						
							| 87 | 
							
								81 86
							 | 
							oveq12d | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) = ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq2d | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( ( F ` j ) ` n ) ) ) )  | 
						
						
							| 89 | 
							
								80 88
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) = ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							breq1d | 
							 |-  ( ( ( ( ph /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							ralbidva | 
							 |-  ( ( ( ph /\ n e. I ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							rexbidva | 
							 |-  ( ( ph /\ n e. I ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							ralbidv | 
							 |-  ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( ( F ` j ) ` n ) ) < x <-> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) )  | 
						
						
							| 94 | 
							
								78 93
							 | 
							sylibd | 
							 |-  ( ( ph /\ n e. I ) -> ( A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` j ) ( Rn ` I ) ( F ` k ) ) < x -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x ) )  | 
						
						
							| 95 | 
							
								37 94
							 | 
							mpd | 
							 |-  ( ( ph /\ n e. I ) -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) - ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` j ) ) ) < x )  | 
						
						
							| 96 | 
							
								
							 | 
							nnex | 
							 |-  NN e. _V  | 
						
						
							| 97 | 
							
								96
							 | 
							mptex | 
							 |-  ( t e. NN |-> ( ( F ` t ) ` n ) ) e. _V  | 
						
						
							| 98 | 
							
								97
							 | 
							a1i | 
							 |-  ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) e. _V )  | 
						
						
							| 99 | 
							
								12 27 95 98
							 | 
							caucvg | 
							 |-  ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) e. dom ~~> )  | 
						
						
							| 100 | 
							
								
							 | 
							climdm | 
							 |-  ( ( t e. NN |-> ( ( F ` t ) ` n ) ) e. dom ~~> <-> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							sylib | 
							 |-  ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							fveq2 | 
							 |-  ( m = n -> ( ( F ` t ) ` m ) = ( ( F ` t ) ` n ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							mpteq2dv | 
							 |-  ( m = n -> ( t e. NN |-> ( ( F ` t ) ` m ) ) = ( t e. NN |-> ( ( F ` t ) ` n ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							fveq2d | 
							 |-  ( m = n -> ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` m ) ) ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							fvex | 
							 |-  ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) e. _V  | 
						
						
							| 106 | 
							
								104 7 105
							 | 
							fvmpt | 
							 |-  ( n e. I -> ( P ` n ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							adantl | 
							 |-  ( ( ph /\ n e. I ) -> ( P ` n ) = ( ~~> ` ( t e. NN |-> ( ( F ` t ) ` n ) ) ) )  | 
						
						
							| 108 | 
							
								101 107
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( P ` n ) )  | 
						
						
							| 109 | 
							
								12 13 108 26
							 | 
							climrecl | 
							 |-  ( ( ph /\ n e. I ) -> ( P ` n ) e. RR )  | 
						
						
							| 110 | 
							
								109
							 | 
							ralrimiva | 
							 |-  ( ph -> A. n e. I ( P ` n ) e. RR )  | 
						
						
							| 111 | 
							
								
							 | 
							ffnfv | 
							 |-  ( P : I --> RR <-> ( P Fn I /\ A. n e. I ( P ` n ) e. RR ) )  | 
						
						
							| 112 | 
							
								11 110 111
							 | 
							sylanbrc | 
							 |-  ( ph -> P : I --> RR )  | 
						
						
							| 113 | 
							
								
							 | 
							reex | 
							 |-  RR e. _V  | 
						
						
							| 114 | 
							
								
							 | 
							elmapg | 
							 |-  ( ( RR e. _V /\ I e. Fin ) -> ( P e. ( RR ^m I ) <-> P : I --> RR ) )  | 
						
						
							| 115 | 
							
								113 4 114
							 | 
							sylancr | 
							 |-  ( ph -> ( P e. ( RR ^m I ) <-> P : I --> RR ) )  | 
						
						
							| 116 | 
							
								112 115
							 | 
							mpbird | 
							 |-  ( ph -> P e. ( RR ^m I ) )  | 
						
						
							| 117 | 
							
								116 1
							 | 
							eleqtrrdi | 
							 |-  ( ph -> P e. X )  | 
						
						
							| 118 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 119 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> I e. Fin )  | 
						
						
							| 120 | 
							
								20
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( F ` k ) e. X )  | 
						
						
							| 121 | 
							
								117
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> P e. X )  | 
						
						
							| 122 | 
							
								1
							 | 
							rrnmval | 
							 |-  ( ( I e. Fin /\ ( F ` k ) e. X /\ P e. X ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) )  | 
						
						
							| 123 | 
							
								119 120 121 122
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> I = (/) )  | 
						
						
							| 125 | 
							
								124
							 | 
							sumeq1d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = sum_ y e. (/) ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) )  | 
						
						
							| 126 | 
							
								
							 | 
							sum0 | 
							 |-  sum_ y e. (/) ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = 0  | 
						
						
							| 127 | 
							
								125 126
							 | 
							eqtrdi | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) = 0 )  | 
						
						
							| 128 | 
							
								127
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( sqrt ` sum_ y e. I ( ( ( ( F ` k ) ` y ) - ( P ` y ) ) ^ 2 ) ) = ( sqrt ` 0 ) )  | 
						
						
							| 129 | 
							
								123 128
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = ( sqrt ` 0 ) )  | 
						
						
							| 130 | 
							
								
							 | 
							sqrt0 | 
							 |-  ( sqrt ` 0 ) = 0  | 
						
						
							| 131 | 
							
								129 130
							 | 
							eqtrdi | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) = 0 )  | 
						
						
							| 132 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> x e. RR+ )  | 
						
						
							| 133 | 
							
								132
							 | 
							rpgt0d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> 0 < x )  | 
						
						
							| 134 | 
							
								131 133
							 | 
							eqbrtrd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) /\ k e. NN ) -> ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 135 | 
							
								134
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) -> A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 136 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = 1 -> ( ZZ>= ` j ) = ( ZZ>= ` 1 ) )  | 
						
						
							| 137 | 
							
								136 12
							 | 
							eqtr4di | 
							 |-  ( j = 1 -> ( ZZ>= ` j ) = NN )  | 
						
						
							| 138 | 
							
								137
							 | 
							raleqdv | 
							 |-  ( j = 1 -> ( A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x <-> A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							rspcev | 
							 |-  ( ( 1 e. NN /\ A. k e. NN ( ( F ` k ) ( Rn ` I ) P ) < x ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 140 | 
							
								118 135 139
							 | 
							sylancr | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I = (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 141 | 
							
								140
							 | 
							expr | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( I = (/) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 142 | 
							
								
							 | 
							1zzd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> 1 e. ZZ )  | 
						
						
							| 143 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> x e. RR+ )  | 
						
						
							| 144 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> I =/= (/) )  | 
						
						
							| 145 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> I e. Fin )  | 
						
						
							| 146 | 
							
								
							 | 
							hashnncl | 
							 |-  ( I e. Fin -> ( ( # ` I ) e. NN <-> I =/= (/) ) )  | 
						
						
							| 147 | 
							
								145 146
							 | 
							syl | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( ( # ` I ) e. NN <-> I =/= (/) ) )  | 
						
						
							| 148 | 
							
								144 147
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( # ` I ) e. NN )  | 
						
						
							| 149 | 
							
								148
							 | 
							nnrpd | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( # ` I ) e. RR+ )  | 
						
						
							| 150 | 
							
								149
							 | 
							rpsqrtcld | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( sqrt ` ( # ` I ) ) e. RR+ )  | 
						
						
							| 151 | 
							
								143 150
							 | 
							rpdivcld | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ )  | 
						
						
							| 152 | 
							
								151
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ )  | 
						
						
							| 153 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( t e. NN |-> ( ( F ` t ) ` n ) ) ` k ) = ( ( F ` k ) ` n ) )  | 
						
						
							| 154 | 
							
								108
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( t e. NN |-> ( ( F ` t ) ` n ) ) ~~> ( P ` n ) )  | 
						
						
							| 155 | 
							
								12 142 152 153 154
							 | 
							climi2 | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 156 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 157 | 
							
								12
							 | 
							rexuz3 | 
							 |-  ( 1 e. ZZ -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 158 | 
							
								156 157
							 | 
							ax-mp | 
							 |-  ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 159 | 
							
								25
							 | 
							adantllr | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( F ` k ) ` n ) e. RR )  | 
						
						
							| 160 | 
							
								109
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( P ` n ) e. RR )  | 
						
						
							| 161 | 
							
								160
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( P ` n ) e. RR )  | 
						
						
							| 162 | 
							
								2
							 | 
							remetdval | 
							 |-  ( ( ( ( F ` k ) ` n ) e. RR /\ ( P ` n ) e. RR ) -> ( ( ( F ` k ) ` n ) M ( P ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) )  | 
						
						
							| 163 | 
							
								159 161 162
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( ( F ` k ) ` n ) M ( P ` n ) ) = ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							breq1d | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ k e. NN ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 165 | 
							
								41 164
							 | 
							sylan2 | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							anassrs | 
							 |-  ( ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							ralbidva | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 168 | 
							
								167
							 | 
							rexbidva | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 169 | 
							
								158 168
							 | 
							bitr3id | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. NN A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` n ) - ( P ` n ) ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 170 | 
							
								155 169
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ n e. I ) -> E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 172 | 
							
								12
							 | 
							rexuz3 | 
							 |-  ( 1 e. ZZ -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 173 | 
							
								156 172
							 | 
							ax-mp | 
							 |-  ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 174 | 
							
								
							 | 
							rexfiuz | 
							 |-  ( I e. Fin -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 175 | 
							
								145 174
							 | 
							syl | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. ZZ A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 176 | 
							
								173 175
							 | 
							bitrid | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) <-> A. n e. I E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 177 | 
							
								171 176
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) )  | 
						
						
							| 178 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I e. Fin )  | 
						
						
							| 179 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I =/= (/) )  | 
						
						
							| 180 | 
							
								
							 | 
							eldifsn | 
							 |-  ( I e. ( Fin \ { (/) } ) <-> ( I e. Fin /\ I =/= (/) ) ) | 
						
						
							| 181 | 
							
								178 179 180
							 | 
							sylanbrc | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> I e. ( Fin \ { (/) } ) ) | 
						
						
							| 182 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> F : NN --> X )  | 
						
						
							| 183 | 
							
								182
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( F ` k ) e. X )  | 
						
						
							| 184 | 
							
								117
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> P e. X )  | 
						
						
							| 185 | 
							
								151
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ )  | 
						
						
							| 186 | 
							
								1 2
							 | 
							rrndstprj2 | 
							 |-  ( ( ( I e. ( Fin \ { (/) } ) /\ ( F ` k ) e. X /\ P e. X ) /\ ( ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ /\ A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) | 
						
						
							| 187 | 
							
								186
							 | 
							expr | 
							 |-  ( ( ( I e. ( Fin \ { (/) } ) /\ ( F ` k ) e. X /\ P e. X ) /\ ( x / ( sqrt ` ( # ` I ) ) ) e. RR+ ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) ) | 
						
						
							| 188 | 
							
								181 183 184 185 187
							 | 
							syl31anc | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) )  | 
						
						
							| 189 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> x e. RR+ )  | 
						
						
							| 190 | 
							
								189
							 | 
							rpcnd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> x e. CC )  | 
						
						
							| 191 | 
							
								150
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) e. RR+ )  | 
						
						
							| 192 | 
							
								191
							 | 
							rpcnd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) e. CC )  | 
						
						
							| 193 | 
							
								191
							 | 
							rpne0d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( sqrt ` ( # ` I ) ) =/= 0 )  | 
						
						
							| 194 | 
							
								190 192 193
							 | 
							divcan1d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) = x )  | 
						
						
							| 195 | 
							
								194
							 | 
							breq2d | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( ( ( F ` k ) ( Rn ` I ) P ) < ( ( x / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) <-> ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 196 | 
							
								188 195
							 | 
							sylibd | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ k e. NN ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 197 | 
							
								41 196
							 | 
							sylan2 | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							anassrs | 
							 |-  ( ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							ralimdva | 
							 |-  ( ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) /\ j e. NN ) -> ( A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 200 | 
							
								199
							 | 
							reximdva | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) A. n e. I ( ( ( F ` k ) ` n ) M ( P ` n ) ) < ( x / ( sqrt ` ( # ` I ) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 201 | 
							
								177 200
							 | 
							mpd | 
							 |-  ( ( ph /\ ( x e. RR+ /\ I =/= (/) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 202 | 
							
								201
							 | 
							expr | 
							 |-  ( ( ph /\ x e. RR+ ) -> ( I =/= (/) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) )  | 
						
						
							| 203 | 
							
								141 202
							 | 
							pm2.61dne | 
							 |-  ( ( ph /\ x e. RR+ ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 204 | 
							
								203
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x )  | 
						
						
							| 205 | 
							
								3 31 12 32 33 6
							 | 
							lmmbrf | 
							 |-  ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F ` k ) ( Rn ` I ) P ) < x ) ) )  | 
						
						
							| 206 | 
							
								117 204 205
							 | 
							mpbir2and | 
							 |-  ( ph -> F ( ~~>t ` J ) P )  | 
						
						
							| 207 | 
							
								
							 | 
							releldm | 
							 |-  ( ( Rel ( ~~>t ` J ) /\ F ( ~~>t ` J ) P ) -> F e. dom ( ~~>t ` J ) )  | 
						
						
							| 208 | 
							
								8 206 207
							 | 
							sylancr | 
							 |-  ( ph -> F e. dom ( ~~>t ` J ) )  |