| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnval.1 |
|- X = ( RR ^m I ) |
| 2 |
1
|
rrnval |
|- ( I e. Fin -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( Rn ` I ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 4 |
|
fveq1 |
|- ( x = F -> ( x ` k ) = ( F ` k ) ) |
| 5 |
|
fveq1 |
|- ( y = G -> ( y ` k ) = ( G ` k ) ) |
| 6 |
4 5
|
oveqan12d |
|- ( ( x = F /\ y = G ) -> ( ( x ` k ) - ( y ` k ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 7 |
6
|
oveq1d |
|- ( ( x = F /\ y = G ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 8 |
7
|
sumeq2sdv |
|- ( ( x = F /\ y = G ) -> sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 9 |
8
|
fveq2d |
|- ( ( x = F /\ y = G ) -> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ( I e. Fin /\ F e. X /\ G e. X ) /\ ( x = F /\ y = G ) ) -> ( sqrt ` sum_ k e. I ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 11 |
|
simp2 |
|- ( ( I e. Fin /\ F e. X /\ G e. X ) -> F e. X ) |
| 12 |
|
simp3 |
|- ( ( I e. Fin /\ F e. X /\ G e. X ) -> G e. X ) |
| 13 |
|
fvexd |
|- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) e. _V ) |
| 14 |
3 10 11 12 13
|
ovmpod |
|- ( ( I e. Fin /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) = ( sqrt ` sum_ k e. I ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |