Step |
Hyp |
Ref |
Expression |
1 |
|
rrntotbnd.1 |
|- X = ( RR ^m I ) |
2 |
|
rrntotbnd.2 |
|- M = ( ( Rn ` I ) |` ( Y X. Y ) ) |
3 |
|
eqid |
|- ( ( CCfld |`s RR ) ^s I ) = ( ( CCfld |`s RR ) ^s I ) |
4 |
|
eqid |
|- ( dist ` ( ( CCfld |`s RR ) ^s I ) ) = ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |
5 |
3 4 1
|
repwsmet |
|- ( I e. Fin -> ( dist ` ( ( CCfld |`s RR ) ^s I ) ) e. ( Met ` X ) ) |
6 |
1
|
rrnmet |
|- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
7 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
8 |
|
nn0re |
|- ( ( # ` I ) e. NN0 -> ( # ` I ) e. RR ) |
9 |
|
nn0ge0 |
|- ( ( # ` I ) e. NN0 -> 0 <_ ( # ` I ) ) |
10 |
8 9
|
resqrtcld |
|- ( ( # ` I ) e. NN0 -> ( sqrt ` ( # ` I ) ) e. RR ) |
11 |
7 10
|
syl |
|- ( I e. Fin -> ( sqrt ` ( # ` I ) ) e. RR ) |
12 |
8 9
|
sqrtge0d |
|- ( ( # ` I ) e. NN0 -> 0 <_ ( sqrt ` ( # ` I ) ) ) |
13 |
7 12
|
syl |
|- ( I e. Fin -> 0 <_ ( sqrt ` ( # ` I ) ) ) |
14 |
11 13
|
ge0p1rpd |
|- ( I e. Fin -> ( ( sqrt ` ( # ` I ) ) + 1 ) e. RR+ ) |
15 |
|
1rp |
|- 1 e. RR+ |
16 |
15
|
a1i |
|- ( I e. Fin -> 1 e. RR+ ) |
17 |
|
metcl |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( x ( Rn ` I ) y ) e. RR ) |
18 |
17
|
3expb |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ ( x e. X /\ y e. X ) ) -> ( x ( Rn ` I ) y ) e. RR ) |
19 |
6 18
|
sylan |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( Rn ` I ) y ) e. RR ) |
20 |
11
|
adantr |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` ( # ` I ) ) e. RR ) |
21 |
5
|
adantr |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( dist ` ( ( CCfld |`s RR ) ^s I ) ) e. ( Met ` X ) ) |
22 |
|
simprl |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
23 |
|
simprr |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
24 |
|
metcl |
|- ( ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) e. RR ) |
25 |
|
metge0 |
|- ( ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) e. ( Met ` X ) /\ x e. X /\ y e. X ) -> 0 <_ ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) |
26 |
24 25
|
jca |
|- ( ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) e. ( Met ` X ) /\ x e. X /\ y e. X ) -> ( ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) e. RR /\ 0 <_ ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
27 |
21 22 23 26
|
syl3anc |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) e. RR /\ 0 <_ ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
28 |
27
|
simpld |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) e. RR ) |
29 |
20 28
|
remulcld |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) e. RR ) |
30 |
|
peano2re |
|- ( ( sqrt ` ( # ` I ) ) e. RR -> ( ( sqrt ` ( # ` I ) ) + 1 ) e. RR ) |
31 |
11 30
|
syl |
|- ( I e. Fin -> ( ( sqrt ` ( # ` I ) ) + 1 ) e. RR ) |
32 |
31
|
adantr |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` ( # ` I ) ) + 1 ) e. RR ) |
33 |
32 28
|
remulcld |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( ( sqrt ` ( # ` I ) ) + 1 ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) e. RR ) |
34 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
35 |
3 4 1 34
|
rrnequiv |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) <_ ( x ( Rn ` I ) y ) /\ ( x ( Rn ` I ) y ) <_ ( ( sqrt ` ( # ` I ) ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) ) |
36 |
35
|
simprd |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( Rn ` I ) y ) <_ ( ( sqrt ` ( # ` I ) ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
37 |
20
|
lep1d |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` ( # ` I ) ) <_ ( ( sqrt ` ( # ` I ) ) + 1 ) ) |
38 |
|
lemul1a |
|- ( ( ( ( sqrt ` ( # ` I ) ) e. RR /\ ( ( sqrt ` ( # ` I ) ) + 1 ) e. RR /\ ( ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) e. RR /\ 0 <_ ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) /\ ( sqrt ` ( # ` I ) ) <_ ( ( sqrt ` ( # ` I ) ) + 1 ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) <_ ( ( ( sqrt ` ( # ` I ) ) + 1 ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
39 |
20 32 27 37 38
|
syl31anc |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) <_ ( ( ( sqrt ` ( # ` I ) ) + 1 ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
40 |
19 29 33 36 39
|
letrd |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( Rn ` I ) y ) <_ ( ( ( sqrt ` ( # ` I ) ) + 1 ) x. ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) ) ) |
41 |
35
|
simpld |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) <_ ( x ( Rn ` I ) y ) ) |
42 |
19
|
recnd |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( Rn ` I ) y ) e. CC ) |
43 |
42
|
mulid2d |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( 1 x. ( x ( Rn ` I ) y ) ) = ( x ( Rn ` I ) y ) ) |
44 |
41 43
|
breqtrrd |
|- ( ( I e. Fin /\ ( x e. X /\ y e. X ) ) -> ( x ( dist ` ( ( CCfld |`s RR ) ^s I ) ) y ) <_ ( 1 x. ( x ( Rn ` I ) y ) ) ) |
45 |
|
eqid |
|- ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) = ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) |
46 |
|
ax-resscn |
|- RR C_ CC |
47 |
3 45
|
cnpwstotbnd |
|- ( ( RR C_ CC /\ I e. Fin ) -> ( ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) e. ( TotBnd ` Y ) <-> ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) e. ( Bnd ` Y ) ) ) |
48 |
46 47
|
mpan |
|- ( I e. Fin -> ( ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) e. ( TotBnd ` Y ) <-> ( ( dist ` ( ( CCfld |`s RR ) ^s I ) ) |` ( Y X. Y ) ) e. ( Bnd ` Y ) ) ) |
49 |
5 6 14 16 40 44 45 2 48
|
equivbnd2 |
|- ( I e. Fin -> ( M e. ( TotBnd ` Y ) <-> M e. ( Bnd ` Y ) ) ) |