| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxsca.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrx0.0 |
|- .0. = ( I X. { 0 } ) |
| 3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 |
3
|
fveq2d |
|- ( I e. V -> ( 0g ` H ) = ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 6 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 7 |
|
eqid |
|- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
| 8 |
5 6 7
|
tcphval |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) |
| 9 |
8
|
a1i |
|- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) |
| 10 |
9
|
fveq2d |
|- ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 11 |
|
fvexd |
|- ( I e. V -> ( Base ` ( RRfld freeLMod I ) ) e. _V ) |
| 12 |
11
|
mptexd |
|- ( I e. V -> ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V ) |
| 13 |
|
eqid |
|- ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) = ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) |
| 14 |
|
eqid |
|- ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( RRfld freeLMod I ) ) |
| 15 |
13 14
|
tng0 |
|- ( ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) e. _V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 16 |
12 15
|
syl |
|- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = ( 0g ` ( ( RRfld freeLMod I ) toNrmGrp ( x e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( x ( .i ` ( RRfld freeLMod I ) ) x ) ) ) ) ) ) |
| 17 |
|
refld |
|- RRfld e. Field |
| 18 |
|
isfld |
|- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
| 19 |
|
drngring |
|- ( RRfld e. DivRing -> RRfld e. Ring ) |
| 20 |
19
|
adantr |
|- ( ( RRfld e. DivRing /\ RRfld e. CRing ) -> RRfld e. Ring ) |
| 21 |
18 20
|
sylbi |
|- ( RRfld e. Field -> RRfld e. Ring ) |
| 22 |
17 21
|
ax-mp |
|- RRfld e. Ring |
| 23 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 24 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
| 25 |
23 24
|
frlm0 |
|- ( ( RRfld e. Ring /\ I e. V ) -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 26 |
22 25
|
mpan |
|- ( I e. V -> ( I X. { 0 } ) = ( 0g ` ( RRfld freeLMod I ) ) ) |
| 27 |
2 26
|
eqtr2id |
|- ( I e. V -> ( 0g ` ( RRfld freeLMod I ) ) = .0. ) |
| 28 |
10 16 27
|
3eqtr2d |
|- ( I e. V -> ( 0g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = .0. ) |
| 29 |
4 28
|
eqtrd |
|- ( I e. V -> ( 0g ` H ) = .0. ) |