Step |
Hyp |
Ref |
Expression |
1 |
|
rrx0el.0 |
|- .0. = ( I X. { 0 } ) |
2 |
|
rrx0el.p |
|- P = ( RR ^m I ) |
3 |
|
c0ex |
|- 0 e. _V |
4 |
3
|
fconst |
|- ( I X. { 0 } ) : I --> { 0 } |
5 |
4
|
a1i |
|- ( I e. V -> ( I X. { 0 } ) : I --> { 0 } ) |
6 |
|
0re |
|- 0 e. RR |
7 |
|
snssg |
|- ( 0 e. RR -> ( 0 e. RR <-> { 0 } C_ RR ) ) |
8 |
6 7
|
ax-mp |
|- ( 0 e. RR <-> { 0 } C_ RR ) |
9 |
6 8
|
mpbi |
|- { 0 } C_ RR |
10 |
9
|
a1i |
|- ( I e. V -> { 0 } C_ RR ) |
11 |
5 10
|
fssd |
|- ( I e. V -> ( I X. { 0 } ) : I --> RR ) |
12 |
|
reex |
|- RR e. _V |
13 |
12
|
a1i |
|- ( I e. V -> RR e. _V ) |
14 |
|
id |
|- ( I e. V -> I e. V ) |
15 |
13 14
|
elmapd |
|- ( I e. V -> ( ( I X. { 0 } ) e. ( RR ^m I ) <-> ( I X. { 0 } ) : I --> RR ) ) |
16 |
11 15
|
mpbird |
|- ( I e. V -> ( I X. { 0 } ) e. ( RR ^m I ) ) |
17 |
16 1 2
|
3eltr4g |
|- ( I e. V -> .0. e. P ) |