| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx0el.0 |
|- .0. = ( I X. { 0 } ) |
| 2 |
|
rrx0el.p |
|- P = ( RR ^m I ) |
| 3 |
|
c0ex |
|- 0 e. _V |
| 4 |
3
|
fconst |
|- ( I X. { 0 } ) : I --> { 0 } |
| 5 |
4
|
a1i |
|- ( I e. V -> ( I X. { 0 } ) : I --> { 0 } ) |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
|
snssg |
|- ( 0 e. RR -> ( 0 e. RR <-> { 0 } C_ RR ) ) |
| 8 |
6 7
|
ax-mp |
|- ( 0 e. RR <-> { 0 } C_ RR ) |
| 9 |
6 8
|
mpbi |
|- { 0 } C_ RR |
| 10 |
9
|
a1i |
|- ( I e. V -> { 0 } C_ RR ) |
| 11 |
5 10
|
fssd |
|- ( I e. V -> ( I X. { 0 } ) : I --> RR ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
12
|
a1i |
|- ( I e. V -> RR e. _V ) |
| 14 |
|
id |
|- ( I e. V -> I e. V ) |
| 15 |
13 14
|
elmapd |
|- ( I e. V -> ( ( I X. { 0 } ) e. ( RR ^m I ) <-> ( I X. { 0 } ) : I --> RR ) ) |
| 16 |
11 15
|
mpbird |
|- ( I e. V -> ( I X. { 0 } ) e. ( RR ^m I ) ) |
| 17 |
16 1 2
|
3eltr4g |
|- ( I e. V -> .0. e. P ) |