Metamath Proof Explorer


Theorem rrx2pyel

Description: The y-coordinate of a point in a real Euclidean space of dimension 2 is a real number. (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses rrx2px.i
|- I = { 1 , 2 }
rrx2px.b
|- P = ( RR ^m I )
Assertion rrx2pyel
|- ( X e. P -> ( X ` 2 ) e. RR )

Proof

Step Hyp Ref Expression
1 rrx2px.i
 |-  I = { 1 , 2 }
2 rrx2px.b
 |-  P = ( RR ^m I )
3 id
 |-  ( X e. P -> X e. P )
4 2ex
 |-  2 e. _V
5 4 prid2
 |-  2 e. { 1 , 2 }
6 5 1 eleqtrri
 |-  2 e. I
7 6 a1i
 |-  ( X e. P -> 2 e. I )
8 2 3 7 mapfvd
 |-  ( X e. P -> ( X ` 2 ) e. RR )