| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2line.i |
|- I = { 1 , 2 } |
| 2 |
|
rrx2line.e |
|- E = ( RR^ ` I ) |
| 3 |
|
rrx2line.b |
|- P = ( RR ^m I ) |
| 4 |
|
rrx2line.l |
|- L = ( LineM ` E ) |
| 5 |
|
fveq1 |
|- ( X = Y -> ( X ` 2 ) = ( Y ` 2 ) ) |
| 6 |
5
|
necon3i |
|- ( ( X ` 2 ) =/= ( Y ` 2 ) -> X =/= Y ) |
| 7 |
6
|
adantl |
|- ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> X =/= Y ) |
| 8 |
1 2 3 4
|
rrx2line |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) |
| 9 |
7 8
|
syl3an3 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) |
| 10 |
|
oveq2 |
|- ( ( Y ` 1 ) = ( X ` 1 ) -> ( t x. ( Y ` 1 ) ) = ( t x. ( X ` 1 ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ( Y ` 1 ) = ( X ` 1 ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 12 |
11
|
eqcoms |
|- ( ( X ` 1 ) = ( Y ` 1 ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 15 |
14
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 16 |
15
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) |
| 17 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
| 18 |
17
|
recnd |
|- ( X e. P -> ( X ` 1 ) e. CC ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 1 ) e. CC ) |
| 20 |
19
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 1 ) e. CC ) |
| 21 |
20
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( X ` 1 ) e. CC ) |
| 22 |
|
recn |
|- ( t e. RR -> t e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> t e. CC ) |
| 24 |
21 23
|
affineid |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) = ( X ` 1 ) ) |
| 25 |
16 24
|
eqtrd |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( X ` 1 ) ) |
| 26 |
25
|
eqeq2d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) |
| 27 |
26
|
anbi1d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) |
| 28 |
27
|
rexbidva |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) |
| 29 |
|
simpl |
|- ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) |
| 30 |
29
|
a1i |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) ) |
| 31 |
30
|
rexlimdva |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) ) |
| 32 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 33 |
32
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) e. RR ) |
| 34 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
| 35 |
34
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 2 ) e. RR ) |
| 36 |
35
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 2 ) e. RR ) |
| 37 |
33 36
|
resubcld |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 38 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) e. RR ) |
| 40 |
39 35
|
resubcld |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 41 |
40
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
| 42 |
38
|
recnd |
|- ( Y e. P -> ( Y ` 2 ) e. CC ) |
| 43 |
42
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) e. CC ) |
| 44 |
34
|
recnd |
|- ( X e. P -> ( X ` 2 ) e. CC ) |
| 45 |
44
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 2 ) e. CC ) |
| 46 |
|
simpr |
|- ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) |
| 47 |
46
|
necomd |
|- ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) |
| 48 |
47
|
3ad2ant3 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) |
| 49 |
43 45 48
|
subne0d |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) |
| 50 |
49
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) |
| 51 |
37 41 50
|
redivcld |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. RR ) |
| 52 |
51
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. RR ) |
| 53 |
|
oveq2 |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( 1 - t ) = ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) |
| 54 |
53
|
oveq1d |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( 1 - t ) x. ( X ` 2 ) ) = ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) ) |
| 55 |
|
oveq1 |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( t x. ( Y ` 2 ) ) = ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) |
| 56 |
54 55
|
oveq12d |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) |
| 57 |
56
|
eqeq2d |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) <-> ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) |
| 58 |
57
|
anbi2d |
|- ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) ) |
| 59 |
58
|
adantl |
|- ( ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) /\ t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) ) |
| 60 |
|
simpr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 1 ) = ( X ` 1 ) ) |
| 61 |
44
|
mullidd |
|- ( X e. P -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) |
| 62 |
61
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) |
| 63 |
62
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) |
| 64 |
37
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 65 |
42
|
adantl |
|- ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. CC ) |
| 66 |
44
|
adantr |
|- ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. CC ) |
| 67 |
65 66
|
subcld |
|- ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 68 |
67
|
3adant3 |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 69 |
68
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 70 |
64 69 50
|
divcan1d |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) = ( ( p ` 2 ) - ( X ` 2 ) ) ) |
| 71 |
63 70
|
oveq12d |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) = ( ( X ` 2 ) + ( ( p ` 2 ) - ( X ` 2 ) ) ) ) |
| 72 |
45
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 2 ) e. CC ) |
| 73 |
32
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
| 74 |
73
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) e. CC ) |
| 75 |
72 74
|
pncan3d |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( X ` 2 ) + ( ( p ` 2 ) - ( X ` 2 ) ) ) = ( p ` 2 ) ) |
| 76 |
71 75
|
eqtr2d |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) |
| 77 |
76
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 2 ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) |
| 78 |
|
1cnd |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> 1 e. CC ) |
| 79 |
51
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. CC ) |
| 80 |
43
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( Y ` 2 ) e. CC ) |
| 81 |
78 79 72 80
|
submuladdmuld |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) |
| 82 |
81
|
adantr |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) |
| 83 |
77 82
|
eqtr4d |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) |
| 84 |
60 83
|
jca |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) |
| 85 |
52 59 84
|
rspcedvd |
|- ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) |
| 86 |
85
|
ex |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 1 ) = ( X ` 1 ) -> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) |
| 87 |
31 86
|
impbid |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) |
| 88 |
28 87
|
bitrd |
|- ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) |
| 89 |
88
|
rabbidva |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) |
| 90 |
9 89
|
eqtrd |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) |