| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2xpreen.r |
|- R = ( RR ^m { 1 , 2 } ) |
| 2 |
|
rrx2xpref1o.1 |
|- F = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) |
| 3 |
|
prex |
|- { <. 1 , x >. , <. 2 , y >. } e. _V |
| 4 |
2 3
|
fnmpoi |
|- F Fn ( RR X. RR ) |
| 5 |
|
1st2nd2 |
|- ( z e. ( RR X. RR ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 6 |
5
|
fveq2d |
|- ( z e. ( RR X. RR ) -> ( F ` z ) = ( F ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) ) |
| 7 |
|
df-ov |
|- ( ( 1st ` z ) F ( 2nd ` z ) ) = ( F ` <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
| 8 |
6 7
|
eqtr4di |
|- ( z e. ( RR X. RR ) -> ( F ` z ) = ( ( 1st ` z ) F ( 2nd ` z ) ) ) |
| 9 |
|
xp1st |
|- ( z e. ( RR X. RR ) -> ( 1st ` z ) e. RR ) |
| 10 |
|
xp2nd |
|- ( z e. ( RR X. RR ) -> ( 2nd ` z ) e. RR ) |
| 11 |
|
opeq2 |
|- ( x = ( 1st ` z ) -> <. 1 , x >. = <. 1 , ( 1st ` z ) >. ) |
| 12 |
11
|
preq1d |
|- ( x = ( 1st ` z ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , ( 1st ` z ) >. , <. 2 , y >. } ) |
| 13 |
|
opeq2 |
|- ( y = ( 2nd ` z ) -> <. 2 , y >. = <. 2 , ( 2nd ` z ) >. ) |
| 14 |
13
|
preq2d |
|- ( y = ( 2nd ` z ) -> { <. 1 , ( 1st ` z ) >. , <. 2 , y >. } = { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } ) |
| 15 |
|
prex |
|- { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } e. _V |
| 16 |
12 14 2 15
|
ovmpo |
|- ( ( ( 1st ` z ) e. RR /\ ( 2nd ` z ) e. RR ) -> ( ( 1st ` z ) F ( 2nd ` z ) ) = { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } ) |
| 17 |
9 10 16
|
syl2anc |
|- ( z e. ( RR X. RR ) -> ( ( 1st ` z ) F ( 2nd ` z ) ) = { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } ) |
| 18 |
8 17
|
eqtrd |
|- ( z e. ( RR X. RR ) -> ( F ` z ) = { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } ) |
| 19 |
|
eqid |
|- { 1 , 2 } = { 1 , 2 } |
| 20 |
19 1
|
prelrrx2 |
|- ( ( ( 1st ` z ) e. RR /\ ( 2nd ` z ) e. RR ) -> { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } e. R ) |
| 21 |
9 10 20
|
syl2anc |
|- ( z e. ( RR X. RR ) -> { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } e. R ) |
| 22 |
18 21
|
eqeltrd |
|- ( z e. ( RR X. RR ) -> ( F ` z ) e. R ) |
| 23 |
22
|
rgen |
|- A. z e. ( RR X. RR ) ( F ` z ) e. R |
| 24 |
|
ffnfv |
|- ( F : ( RR X. RR ) --> R <-> ( F Fn ( RR X. RR ) /\ A. z e. ( RR X. RR ) ( F ` z ) e. R ) ) |
| 25 |
4 23 24
|
mpbir2an |
|- F : ( RR X. RR ) --> R |
| 26 |
|
opex |
|- <. 1 , ( 1st ` z ) >. e. _V |
| 27 |
|
opex |
|- <. 2 , ( 2nd ` z ) >. e. _V |
| 28 |
|
opex |
|- <. 1 , ( 1st ` w ) >. e. _V |
| 29 |
|
opex |
|- <. 2 , ( 2nd ` w ) >. e. _V |
| 30 |
26 27 28 29
|
preq12b |
|- ( { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } <-> ( ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. ) \/ ( <. 1 , ( 1st ` z ) >. = <. 2 , ( 2nd ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 1 , ( 1st ` w ) >. ) ) ) |
| 31 |
|
1ex |
|- 1 e. _V |
| 32 |
|
fvex |
|- ( 1st ` z ) e. _V |
| 33 |
31 32
|
opth |
|- ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. <-> ( 1 = 1 /\ ( 1st ` z ) = ( 1st ` w ) ) ) |
| 34 |
33
|
simprbi |
|- ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. -> ( 1st ` z ) = ( 1st ` w ) ) |
| 35 |
|
2ex |
|- 2 e. _V |
| 36 |
|
fvex |
|- ( 2nd ` z ) e. _V |
| 37 |
35 36
|
opth |
|- ( <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. <-> ( 2 = 2 /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) |
| 38 |
37
|
simprbi |
|- ( <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. -> ( 2nd ` z ) = ( 2nd ` w ) ) |
| 39 |
34 38
|
anim12i |
|- ( ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) |
| 40 |
39
|
a1d |
|- ( ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. ) -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 41 |
31 32
|
opth |
|- ( <. 1 , ( 1st ` z ) >. = <. 2 , ( 2nd ` w ) >. <-> ( 1 = 2 /\ ( 1st ` z ) = ( 2nd ` w ) ) ) |
| 42 |
35 36
|
opth |
|- ( <. 2 , ( 2nd ` z ) >. = <. 1 , ( 1st ` w ) >. <-> ( 2 = 1 /\ ( 2nd ` z ) = ( 1st ` w ) ) ) |
| 43 |
|
1ne2 |
|- 1 =/= 2 |
| 44 |
|
eqneqall |
|- ( 1 = 2 -> ( 1 =/= 2 -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) ) |
| 45 |
43 44
|
mpi |
|- ( 1 = 2 -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 46 |
45
|
ad2antrr |
|- ( ( ( 1 = 2 /\ ( 1st ` z ) = ( 2nd ` w ) ) /\ ( 2 = 1 /\ ( 2nd ` z ) = ( 1st ` w ) ) ) -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 47 |
41 42 46
|
syl2anb |
|- ( ( <. 1 , ( 1st ` z ) >. = <. 2 , ( 2nd ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 1 , ( 1st ` w ) >. ) -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 48 |
40 47
|
jaoi |
|- ( ( ( <. 1 , ( 1st ` z ) >. = <. 1 , ( 1st ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 2 , ( 2nd ` w ) >. ) \/ ( <. 1 , ( 1st ` z ) >. = <. 2 , ( 2nd ` w ) >. /\ <. 2 , ( 2nd ` z ) >. = <. 1 , ( 1st ` w ) >. ) ) -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 49 |
30 48
|
sylbi |
|- ( { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } -> ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 50 |
49
|
com12 |
|- ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } -> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 51 |
|
1st2nd2 |
|- ( w e. ( RR X. RR ) -> w = <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
| 52 |
51
|
fveq2d |
|- ( w e. ( RR X. RR ) -> ( F ` w ) = ( F ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
| 53 |
|
df-ov |
|- ( ( 1st ` w ) F ( 2nd ` w ) ) = ( F ` <. ( 1st ` w ) , ( 2nd ` w ) >. ) |
| 54 |
52 53
|
eqtr4di |
|- ( w e. ( RR X. RR ) -> ( F ` w ) = ( ( 1st ` w ) F ( 2nd ` w ) ) ) |
| 55 |
|
xp1st |
|- ( w e. ( RR X. RR ) -> ( 1st ` w ) e. RR ) |
| 56 |
|
xp2nd |
|- ( w e. ( RR X. RR ) -> ( 2nd ` w ) e. RR ) |
| 57 |
|
opeq2 |
|- ( x = ( 1st ` w ) -> <. 1 , x >. = <. 1 , ( 1st ` w ) >. ) |
| 58 |
57
|
preq1d |
|- ( x = ( 1st ` w ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , y >. } ) |
| 59 |
|
opeq2 |
|- ( y = ( 2nd ` w ) -> <. 2 , y >. = <. 2 , ( 2nd ` w ) >. ) |
| 60 |
59
|
preq2d |
|- ( y = ( 2nd ` w ) -> { <. 1 , ( 1st ` w ) >. , <. 2 , y >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } ) |
| 61 |
|
prex |
|- { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } e. _V |
| 62 |
58 60 2 61
|
ovmpo |
|- ( ( ( 1st ` w ) e. RR /\ ( 2nd ` w ) e. RR ) -> ( ( 1st ` w ) F ( 2nd ` w ) ) = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } ) |
| 63 |
55 56 62
|
syl2anc |
|- ( w e. ( RR X. RR ) -> ( ( 1st ` w ) F ( 2nd ` w ) ) = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } ) |
| 64 |
54 63
|
eqtrd |
|- ( w e. ( RR X. RR ) -> ( F ` w ) = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } ) |
| 65 |
18 64
|
eqeqan12d |
|- ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( F ` z ) = ( F ` w ) <-> { <. 1 , ( 1st ` z ) >. , <. 2 , ( 2nd ` z ) >. } = { <. 1 , ( 1st ` w ) >. , <. 2 , ( 2nd ` w ) >. } ) ) |
| 66 |
5 51
|
eqeqan12d |
|- ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( z = w <-> <. ( 1st ` z ) , ( 2nd ` z ) >. = <. ( 1st ` w ) , ( 2nd ` w ) >. ) ) |
| 67 |
32 36
|
opth |
|- ( <. ( 1st ` z ) , ( 2nd ` z ) >. = <. ( 1st ` w ) , ( 2nd ` w ) >. <-> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) |
| 68 |
66 67
|
bitrdi |
|- ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( z = w <-> ( ( 1st ` z ) = ( 1st ` w ) /\ ( 2nd ` z ) = ( 2nd ` w ) ) ) ) |
| 69 |
50 65 68
|
3imtr4d |
|- ( ( z e. ( RR X. RR ) /\ w e. ( RR X. RR ) ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 70 |
69
|
rgen2 |
|- A. z e. ( RR X. RR ) A. w e. ( RR X. RR ) ( ( F ` z ) = ( F ` w ) -> z = w ) |
| 71 |
|
dff13 |
|- ( F : ( RR X. RR ) -1-1-> R <-> ( F : ( RR X. RR ) --> R /\ A. z e. ( RR X. RR ) A. w e. ( RR X. RR ) ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 72 |
25 70 71
|
mpbir2an |
|- F : ( RR X. RR ) -1-1-> R |
| 73 |
1
|
eleq2i |
|- ( w e. R <-> w e. ( RR ^m { 1 , 2 } ) ) |
| 74 |
|
reex |
|- RR e. _V |
| 75 |
|
prex |
|- { 1 , 2 } e. _V |
| 76 |
74 75
|
elmap |
|- ( w e. ( RR ^m { 1 , 2 } ) <-> w : { 1 , 2 } --> RR ) |
| 77 |
|
1re |
|- 1 e. RR |
| 78 |
|
2re |
|- 2 e. RR |
| 79 |
|
fpr2g |
|- ( ( 1 e. RR /\ 2 e. RR ) -> ( w : { 1 , 2 } --> RR <-> ( ( w ` 1 ) e. RR /\ ( w ` 2 ) e. RR /\ w = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) ) ) |
| 80 |
77 78 79
|
mp2an |
|- ( w : { 1 , 2 } --> RR <-> ( ( w ` 1 ) e. RR /\ ( w ` 2 ) e. RR /\ w = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) ) |
| 81 |
73 76 80
|
3bitri |
|- ( w e. R <-> ( ( w ` 1 ) e. RR /\ ( w ` 2 ) e. RR /\ w = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) ) |
| 82 |
|
opeq2 |
|- ( u = ( w ` 1 ) -> <. 1 , u >. = <. 1 , ( w ` 1 ) >. ) |
| 83 |
82
|
preq1d |
|- ( u = ( w ` 1 ) -> { <. 1 , u >. , <. 2 , v >. } = { <. 1 , ( w ` 1 ) >. , <. 2 , v >. } ) |
| 84 |
83
|
eqeq2d |
|- ( u = ( w ` 1 ) -> ( w = { <. 1 , u >. , <. 2 , v >. } <-> w = { <. 1 , ( w ` 1 ) >. , <. 2 , v >. } ) ) |
| 85 |
|
opeq2 |
|- ( v = ( w ` 2 ) -> <. 2 , v >. = <. 2 , ( w ` 2 ) >. ) |
| 86 |
85
|
preq2d |
|- ( v = ( w ` 2 ) -> { <. 1 , ( w ` 1 ) >. , <. 2 , v >. } = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) |
| 87 |
86
|
eqeq2d |
|- ( v = ( w ` 2 ) -> ( w = { <. 1 , ( w ` 1 ) >. , <. 2 , v >. } <-> w = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) ) |
| 88 |
84 87
|
rspc2ev |
|- ( ( ( w ` 1 ) e. RR /\ ( w ` 2 ) e. RR /\ w = { <. 1 , ( w ` 1 ) >. , <. 2 , ( w ` 2 ) >. } ) -> E. u e. RR E. v e. RR w = { <. 1 , u >. , <. 2 , v >. } ) |
| 89 |
81 88
|
sylbi |
|- ( w e. R -> E. u e. RR E. v e. RR w = { <. 1 , u >. , <. 2 , v >. } ) |
| 90 |
|
opeq2 |
|- ( x = u -> <. 1 , x >. = <. 1 , u >. ) |
| 91 |
90
|
preq1d |
|- ( x = u -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , u >. , <. 2 , y >. } ) |
| 92 |
|
opeq2 |
|- ( y = v -> <. 2 , y >. = <. 2 , v >. ) |
| 93 |
92
|
preq2d |
|- ( y = v -> { <. 1 , u >. , <. 2 , y >. } = { <. 1 , u >. , <. 2 , v >. } ) |
| 94 |
|
prex |
|- { <. 1 , u >. , <. 2 , v >. } e. _V |
| 95 |
91 93 2 94
|
ovmpo |
|- ( ( u e. RR /\ v e. RR ) -> ( u F v ) = { <. 1 , u >. , <. 2 , v >. } ) |
| 96 |
95
|
eqeq2d |
|- ( ( u e. RR /\ v e. RR ) -> ( w = ( u F v ) <-> w = { <. 1 , u >. , <. 2 , v >. } ) ) |
| 97 |
96
|
2rexbiia |
|- ( E. u e. RR E. v e. RR w = ( u F v ) <-> E. u e. RR E. v e. RR w = { <. 1 , u >. , <. 2 , v >. } ) |
| 98 |
89 97
|
sylibr |
|- ( w e. R -> E. u e. RR E. v e. RR w = ( u F v ) ) |
| 99 |
|
fveq2 |
|- ( z = <. u , v >. -> ( F ` z ) = ( F ` <. u , v >. ) ) |
| 100 |
|
df-ov |
|- ( u F v ) = ( F ` <. u , v >. ) |
| 101 |
99 100
|
eqtr4di |
|- ( z = <. u , v >. -> ( F ` z ) = ( u F v ) ) |
| 102 |
101
|
eqeq2d |
|- ( z = <. u , v >. -> ( w = ( F ` z ) <-> w = ( u F v ) ) ) |
| 103 |
102
|
rexxp |
|- ( E. z e. ( RR X. RR ) w = ( F ` z ) <-> E. u e. RR E. v e. RR w = ( u F v ) ) |
| 104 |
98 103
|
sylibr |
|- ( w e. R -> E. z e. ( RR X. RR ) w = ( F ` z ) ) |
| 105 |
104
|
rgen |
|- A. w e. R E. z e. ( RR X. RR ) w = ( F ` z ) |
| 106 |
|
dffo3 |
|- ( F : ( RR X. RR ) -onto-> R <-> ( F : ( RR X. RR ) --> R /\ A. w e. R E. z e. ( RR X. RR ) w = ( F ` z ) ) ) |
| 107 |
25 105 106
|
mpbir2an |
|- F : ( RR X. RR ) -onto-> R |
| 108 |
|
df-f1o |
|- ( F : ( RR X. RR ) -1-1-onto-> R <-> ( F : ( RR X. RR ) -1-1-> R /\ F : ( RR X. RR ) -onto-> R ) ) |
| 109 |
72 107 108
|
mpbir2an |
|- F : ( RR X. RR ) -1-1-onto-> R |