Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
4 |
3
|
fveq2d |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
5 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
6 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
7 |
5 6
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
8 |
4 7
|
eqtr4di |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
9 |
2
|
a1i |
|- ( I e. V -> B = ( Base ` H ) ) |
10 |
|
refld |
|- RRfld e. Field |
11 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
12 |
|
rebase |
|- RR = ( Base ` RRfld ) |
13 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
14 |
|
eqid |
|- { f e. ( RR ^m I ) | f finSupp 0 } = { f e. ( RR ^m I ) | f finSupp 0 } |
15 |
11 12 13 14
|
frlmbas |
|- ( ( RRfld e. Field /\ I e. V ) -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
16 |
10 15
|
mpan |
|- ( I e. V -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
17 |
8 9 16
|
3eqtr4d |
|- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |