| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 |
3
|
fveq2d |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 6 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 7 |
5 6
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 8 |
4 7
|
eqtr4di |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
| 9 |
2
|
a1i |
|- ( I e. V -> B = ( Base ` H ) ) |
| 10 |
|
refld |
|- RRfld e. Field |
| 11 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 12 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 13 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
| 14 |
|
eqid |
|- { f e. ( RR ^m I ) | f finSupp 0 } = { f e. ( RR ^m I ) | f finSupp 0 } |
| 15 |
11 12 13 14
|
frlmbas |
|- ( ( RRfld e. Field /\ I e. V ) -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 16 |
10 15
|
mpan |
|- ( I e. V -> { f e. ( RR ^m I ) | f finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 17 |
8 9 16
|
3eqtr4d |
|- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |