Step |
Hyp |
Ref |
Expression |
1 |
|
rrxbasefi.x |
|- ( ph -> X e. Fin ) |
2 |
|
rrxbasefi.h |
|- H = ( RR^ ` X ) |
3 |
|
rrxbasefi.b |
|- B = ( Base ` H ) |
4 |
2 3
|
rrxbase |
|- ( X e. Fin -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) |
5 |
1 4
|
syl |
|- ( ph -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) |
6 |
|
ssrab2 |
|- { f e. ( RR ^m X ) | f finSupp 0 } C_ ( RR ^m X ) |
7 |
5 6
|
eqsstrdi |
|- ( ph -> B C_ ( RR ^m X ) ) |
8 |
|
simpr |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. ( RR ^m X ) ) |
9 |
|
elmapi |
|- ( f e. ( RR ^m X ) -> f : X --> RR ) |
10 |
9
|
adantl |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> RR ) |
11 |
1
|
adantr |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> X e. Fin ) |
12 |
|
c0ex |
|- 0 e. _V |
13 |
12
|
a1i |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> 0 e. _V ) |
14 |
10 11 13
|
fdmfifsupp |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> f finSupp 0 ) |
15 |
|
rabid |
|- ( f e. { f e. ( RR ^m X ) | f finSupp 0 } <-> ( f e. ( RR ^m X ) /\ f finSupp 0 ) ) |
16 |
8 14 15
|
sylanbrc |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. { f e. ( RR ^m X ) | f finSupp 0 } ) |
17 |
5
|
eqcomd |
|- ( ph -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) |
18 |
17
|
adantr |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) |
19 |
16 18
|
eleqtrd |
|- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. B ) |
20 |
7 19
|
eqelssd |
|- ( ph -> B = ( RR ^m X ) ) |