| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 |
3
|
fveq2d |
|- ( I e. V -> ( dist ` H ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 |
|
resrng |
|- RRfld e. *Ring |
| 6 |
|
srngring |
|- ( RRfld e. *Ring -> RRfld e. Ring ) |
| 7 |
5 6
|
ax-mp |
|- RRfld e. Ring |
| 8 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 9 |
8
|
frlmlmod |
|- ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) |
| 10 |
7 9
|
mpan |
|- ( I e. V -> ( RRfld freeLMod I ) e. LMod ) |
| 11 |
|
lmodgrp |
|- ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) |
| 12 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 13 |
|
eqid |
|- ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 14 |
|
eqid |
|- ( -g ` ( RRfld freeLMod I ) ) = ( -g ` ( RRfld freeLMod I ) ) |
| 15 |
12 13 14
|
tcphds |
|- ( ( RRfld freeLMod I ) e. Grp -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 16 |
10 11 15
|
3syl |
|- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 17 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 18 |
17 14
|
grpsubf |
|- ( ( RRfld freeLMod I ) e. Grp -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) |
| 19 |
10 11 18
|
3syl |
|- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) |
| 20 |
1 2
|
rrxbase |
|- ( I e. V -> B = { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 21 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 22 |
|
re0g |
|- 0 = ( 0g ` RRfld ) |
| 23 |
|
eqid |
|- { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } |
| 24 |
8 21 22 23
|
frlmbas |
|- ( ( RRfld e. Ring /\ I e. V ) -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 25 |
7 24
|
mpan |
|- ( I e. V -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 26 |
20 25
|
eqtrd |
|- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 27 |
26
|
sqxpeqd |
|- ( I e. V -> ( B X. B ) = ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 28 |
27 26
|
feq23d |
|- ( I e. V -> ( ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B <-> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 29 |
19 28
|
mpbird |
|- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B ) |
| 30 |
29
|
fovcdmda |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) e. B ) |
| 31 |
29
|
ffnd |
|- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) ) |
| 32 |
|
fnov |
|- ( ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) <-> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) |
| 33 |
31 32
|
sylib |
|- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) |
| 34 |
1 2
|
rrxnm |
|- ( I e. V -> ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |
| 35 |
3
|
fveq2d |
|- ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 36 |
34 35
|
eqtr2d |
|- ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) ) |
| 37 |
|
fveq1 |
|- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( h ` x ) = ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ) |
| 38 |
37
|
oveq1d |
|- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( ( h ` x ) ^ 2 ) = ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) |
| 39 |
38
|
mpteq2dv |
|- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( x e. I |-> ( ( h ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) |
| 40 |
39
|
oveq2d |
|- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) |
| 41 |
40
|
fveq2d |
|- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) |
| 42 |
30 33 36 41
|
fmpoco |
|- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) ) |
| 43 |
|
simp1 |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> I e. V ) |
| 44 |
|
simprl |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
| 45 |
26
|
adantr |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 46 |
44 45
|
eleqtrd |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 47 |
46
|
3impb |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 48 |
8 21 17
|
frlmbasmap |
|- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f e. ( RR ^m I ) ) |
| 49 |
43 47 48
|
syl2anc |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) |
| 50 |
|
elmapi |
|- ( f e. ( RR ^m I ) -> f : I --> RR ) |
| 51 |
49 50
|
syl |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> f : I --> RR ) |
| 52 |
51
|
ffnd |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> f Fn I ) |
| 53 |
|
simprr |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
| 54 |
53 45
|
eleqtrd |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 55 |
54
|
3impb |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 56 |
8 21 17
|
frlmbasmap |
|- ( ( I e. V /\ g e. ( Base ` ( RRfld freeLMod I ) ) ) -> g e. ( RR ^m I ) ) |
| 57 |
43 55 56
|
syl2anc |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) |
| 58 |
|
elmapi |
|- ( g e. ( RR ^m I ) -> g : I --> RR ) |
| 59 |
57 58
|
syl |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> g : I --> RR ) |
| 60 |
59
|
ffnd |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> g Fn I ) |
| 61 |
|
inidm |
|- ( I i^i I ) = I |
| 62 |
|
eqidd |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) |
| 63 |
|
eqidd |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) |
| 64 |
52 60 43 43 61 62 63
|
offval |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f oF ( -g ` RRfld ) g ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) |
| 65 |
7
|
a1i |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> RRfld e. Ring ) |
| 66 |
|
simpl |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> I e. V ) |
| 67 |
|
eqid |
|- ( -g ` RRfld ) = ( -g ` RRfld ) |
| 68 |
8 17 65 66 46 54 67 14
|
frlmsubgval |
|- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) |
| 69 |
68
|
3impb |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) |
| 70 |
51
|
ffvelcdmda |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 71 |
59
|
ffvelcdmda |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) e. RR ) |
| 72 |
67
|
resubgval |
|- ( ( ( f ` x ) e. RR /\ ( g ` x ) e. RR ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) |
| 73 |
70 71 72
|
syl2anc |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) |
| 74 |
73
|
mpteq2dva |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) |
| 75 |
64 69 74
|
3eqtr4d |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) ) |
| 76 |
70 71
|
resubcld |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) e. RR ) |
| 77 |
75 76
|
fvmpt2d |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) = ( ( f ` x ) - ( g ` x ) ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) = ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) |
| 79 |
78
|
mpteq2dva |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) |
| 80 |
79
|
oveq2d |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) |
| 81 |
80
|
fveq2d |
|- ( ( I e. V /\ f e. B /\ g e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) |
| 82 |
81
|
mpoeq3dva |
|- ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
| 83 |
42 82
|
eqtrd |
|- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
| 84 |
4 16 83
|
3eqtr2rd |
|- ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |