Step |
Hyp |
Ref |
Expression |
1 |
|
rrxdsfi.h |
|- H = ( RR^ ` I ) |
2 |
|
rrxdsfi.b |
|- B = ( RR ^m I ) |
3 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
3 1 4
|
rrxbasefi |
|- ( I e. Fin -> ( Base ` H ) = ( RR ^m I ) ) |
6 |
2 5
|
eqtr4id |
|- ( I e. Fin -> B = ( Base ` H ) ) |
7 |
6
|
adantr |
|- ( ( I e. Fin /\ f e. B ) -> B = ( Base ` H ) ) |
8 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
9 |
8
|
oveq1i |
|- ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
10 |
|
simp1 |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> I e. Fin ) |
11 |
|
simpr |
|- ( ( I e. Fin /\ f e. B ) -> f e. B ) |
12 |
11 2
|
eleqtrdi |
|- ( ( I e. Fin /\ f e. B ) -> f e. ( RR ^m I ) ) |
13 |
12
|
3adant3 |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) |
14 |
|
elmapi |
|- ( f e. ( RR ^m I ) -> f : I --> RR ) |
15 |
13 14
|
syl |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> f : I --> RR ) |
16 |
15
|
ffvelrnda |
|- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( f ` k ) e. RR ) |
17 |
|
simpr |
|- ( ( I e. Fin /\ g e. B ) -> g e. B ) |
18 |
17 2
|
eleqtrdi |
|- ( ( I e. Fin /\ g e. B ) -> g e. ( RR ^m I ) ) |
19 |
18
|
3adant2 |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) |
20 |
|
elmapi |
|- ( g e. ( RR ^m I ) -> g : I --> RR ) |
21 |
19 20
|
syl |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> g : I --> RR ) |
22 |
21
|
ffvelrnda |
|- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( g ` k ) e. RR ) |
23 |
16 22
|
resubcld |
|- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( f ` k ) - ( g ` k ) ) e. RR ) |
24 |
23
|
resqcld |
|- ( ( ( I e. Fin /\ f e. B /\ g e. B ) /\ k e. I ) -> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) e. RR ) |
25 |
10 24
|
regsumfsum |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( ( CCfld |`s RR ) gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) |
26 |
9 25
|
eqtr2id |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) = ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
27 |
26
|
fveq2d |
|- ( ( I e. Fin /\ f e. B /\ g e. B ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
28 |
27
|
3expb |
|- ( ( I e. Fin /\ ( f e. B /\ g e. B ) ) -> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) = ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) |
29 |
6 7 28
|
mpoeq123dva |
|- ( I e. Fin -> ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) = ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) ) |
30 |
1 4
|
rrxds |
|- ( I e. Fin -> ( f e. ( Base ` H ) , g e. ( Base ` H ) |-> ( sqrt ` ( RRfld gsum ( k e. I |-> ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |
31 |
29 30
|
eqtr2d |
|- ( I e. Fin -> ( dist ` H ) = ( f e. B , g e. B |-> ( sqrt ` sum_ k e. I ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |