Metamath Proof Explorer


Theorem rrxf

Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1
|- X = { h e. ( RR ^m I ) | h finSupp 0 }
rrxf.1
|- ( ph -> F e. X )
Assertion rrxf
|- ( ph -> F : I --> RR )

Proof

Step Hyp Ref Expression
1 rrxmval.1
 |-  X = { h e. ( RR ^m I ) | h finSupp 0 }
2 rrxf.1
 |-  ( ph -> F e. X )
3 1 ssrab3
 |-  X C_ ( RR ^m I )
4 3 2 sselid
 |-  ( ph -> F e. ( RR ^m I ) )
5 elmapi
 |-  ( F e. ( RR ^m I ) -> F : I --> RR )
6 4 5 syl
 |-  ( ph -> F : I --> RR )