Metamath Proof Explorer


Theorem rrxfsupp

Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1
|- X = { h e. ( RR ^m I ) | h finSupp 0 }
rrxf.1
|- ( ph -> F e. X )
Assertion rrxfsupp
|- ( ph -> ( F supp 0 ) e. Fin )

Proof

Step Hyp Ref Expression
1 rrxmval.1
 |-  X = { h e. ( RR ^m I ) | h finSupp 0 }
2 rrxf.1
 |-  ( ph -> F e. X )
3 2 1 eleqtrdi
 |-  ( ph -> F e. { h e. ( RR ^m I ) | h finSupp 0 } )
4 breq1
 |-  ( h = F -> ( h finSupp 0 <-> F finSupp 0 ) )
5 4 elrab
 |-  ( F e. { h e. ( RR ^m I ) | h finSupp 0 } <-> ( F e. ( RR ^m I ) /\ F finSupp 0 ) )
6 3 5 sylib
 |-  ( ph -> ( F e. ( RR ^m I ) /\ F finSupp 0 ) )
7 6 simprd
 |-  ( ph -> F finSupp 0 )
8 7 fsuppimpd
 |-  ( ph -> ( F supp 0 ) e. Fin )