Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| rrxf.1 | |- ( ph -> F e. X ) |
||
| Assertion | rrxfsupp | |- ( ph -> ( F supp 0 ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 2 | rrxf.1 | |- ( ph -> F e. X ) |
|
| 3 | 2 1 | eleqtrdi | |- ( ph -> F e. { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 4 | breq1 | |- ( h = F -> ( h finSupp 0 <-> F finSupp 0 ) ) |
|
| 5 | 4 | elrab | |- ( F e. { h e. ( RR ^m I ) | h finSupp 0 } <-> ( F e. ( RR ^m I ) /\ F finSupp 0 ) ) |
| 6 | 3 5 | sylib | |- ( ph -> ( F e. ( RR ^m I ) /\ F finSupp 0 ) ) |
| 7 | 6 | simprd | |- ( ph -> F finSupp 0 ) |
| 8 | 7 | fsuppimpd | |- ( ph -> ( F supp 0 ) e. Fin ) |