| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
1 2
|
rrxprds |
|- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 4 |
3
|
fveq2d |
|- ( I e. V -> ( .i ` H ) = ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) ) |
| 5 |
|
eqid |
|- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
| 6 |
|
eqid |
|- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
| 7 |
5 6
|
tcphip |
|- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 8 |
2
|
fvexi |
|- B e. _V |
| 9 |
|
eqid |
|- ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) |
| 10 |
|
eqid |
|- ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
| 11 |
9 10
|
ressip |
|- ( B e. _V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
| 12 |
8 11
|
ax-mp |
|- ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
| 13 |
|
eqid |
|- ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |
| 14 |
|
refld |
|- RRfld e. Field |
| 15 |
14
|
a1i |
|- ( I e. V -> RRfld e. Field ) |
| 16 |
|
snex |
|- { ( ( subringAlg ` RRfld ) ` RR ) } e. _V |
| 17 |
|
xpexg |
|- ( ( I e. V /\ { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
| 18 |
16 17
|
mpan2 |
|- ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
| 19 |
|
eqid |
|- ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
| 20 |
|
fvex |
|- ( ( subringAlg ` RRfld ) ` RR ) e. _V |
| 21 |
20
|
snnz |
|- { ( ( subringAlg ` RRfld ) ` RR ) } =/= (/) |
| 22 |
|
dmxp |
|- ( { ( ( subringAlg ` RRfld ) ` RR ) } =/= (/) -> dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I ) |
| 23 |
21 22
|
ax-mp |
|- dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I |
| 24 |
23
|
a1i |
|- ( I e. V -> dom ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) = I ) |
| 25 |
13 15 18 19 24 10
|
prdsip |
|- ( I e. V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( f e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) , g e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) ) ) |
| 26 |
13 15 18 19 24
|
prdsbas |
|- ( I e. V -> ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ) |
| 27 |
|
eqidd |
|- ( x e. I -> ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
| 28 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 29 |
28
|
eqimssi |
|- RR C_ ( Base ` RRfld ) |
| 30 |
29
|
a1i |
|- ( x e. I -> RR C_ ( Base ` RRfld ) ) |
| 31 |
27 30
|
srabase |
|- ( x e. I -> ( Base ` RRfld ) = ( Base ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
| 32 |
28
|
a1i |
|- ( x e. I -> RR = ( Base ` RRfld ) ) |
| 33 |
20
|
fvconst2 |
|- ( x e. I -> ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
| 34 |
33
|
fveq2d |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = ( Base ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
| 35 |
31 32 34
|
3eqtr4rd |
|- ( x e. I -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = RR ) |
| 36 |
35
|
adantl |
|- ( ( I e. V /\ x e. I ) -> ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = RR ) |
| 37 |
36
|
ixpeq2dva |
|- ( I e. V -> X_ x e. I ( Base ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = X_ x e. I RR ) |
| 38 |
|
reex |
|- RR e. _V |
| 39 |
|
ixpconstg |
|- ( ( I e. V /\ RR e. _V ) -> X_ x e. I RR = ( RR ^m I ) ) |
| 40 |
38 39
|
mpan2 |
|- ( I e. V -> X_ x e. I RR = ( RR ^m I ) ) |
| 41 |
26 37 40
|
3eqtrd |
|- ( I e. V -> ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( RR ^m I ) ) |
| 42 |
|
remulr |
|- x. = ( .r ` RRfld ) |
| 43 |
33 30
|
sraip |
|- ( x e. I -> ( .r ` RRfld ) = ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ) |
| 44 |
42 43
|
eqtr2id |
|- ( x e. I -> ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) = x. ) |
| 45 |
44
|
oveqd |
|- ( x e. I -> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) = ( ( f ` x ) x. ( g ` x ) ) ) |
| 46 |
45
|
mpteq2ia |
|- ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) |
| 47 |
46
|
a1i |
|- ( I e. V -> ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) |
| 48 |
47
|
oveq2d |
|- ( I e. V -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) |
| 49 |
41 41 48
|
mpoeq123dv |
|- ( I e. V -> ( f e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) , g e. ( Base ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ( .i ` ( ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ` x ) ) ( g ` x ) ) ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 50 |
25 49
|
eqtrd |
|- ( I e. V -> ( .i ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 51 |
12 50
|
eqtr3id |
|- ( I e. V -> ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 52 |
7 51
|
eqtr3id |
|- ( I e. V -> ( .i ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) = ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) ) |
| 53 |
4 52
|
eqtr2d |
|- ( I e. V -> ( f e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( f ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) |