| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxlines.e |
|- E = ( RR^ ` I ) |
| 2 |
|
rrxlines.p |
|- P = ( RR ^m I ) |
| 3 |
|
rrxlines.l |
|- L = ( LineM ` E ) |
| 4 |
|
rrxlines.m |
|- .x. = ( .s ` E ) |
| 5 |
|
rrxlines.a |
|- .+ = ( +g ` E ) |
| 6 |
1
|
fvexi |
|- E e. _V |
| 7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 8 |
|
eqid |
|- ( Scalar ` E ) = ( Scalar ` E ) |
| 9 |
|
eqid |
|- ( Base ` ( Scalar ` E ) ) = ( Base ` ( Scalar ` E ) ) |
| 10 |
|
eqid |
|- ( -g ` ( Scalar ` E ) ) = ( -g ` ( Scalar ` E ) ) |
| 11 |
|
eqid |
|- ( 1r ` ( Scalar ` E ) ) = ( 1r ` ( Scalar ` E ) ) |
| 12 |
7 3 8 9 4 5 10 11
|
lines |
|- ( E e. _V -> L = ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) ) |
| 13 |
6 12
|
mp1i |
|- ( I e. Fin -> L = ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) ) |
| 14 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
| 15 |
14 1 7
|
rrxbasefi |
|- ( I e. Fin -> ( Base ` E ) = ( RR ^m I ) ) |
| 16 |
15 2
|
eqtr4di |
|- ( I e. Fin -> ( Base ` E ) = P ) |
| 17 |
16
|
difeq1d |
|- ( I e. Fin -> ( ( Base ` E ) \ { x } ) = ( P \ { x } ) ) |
| 18 |
1
|
rrxsca |
|- ( I e. Fin -> ( Scalar ` E ) = RRfld ) |
| 19 |
18
|
fveq2d |
|- ( I e. Fin -> ( Base ` ( Scalar ` E ) ) = ( Base ` RRfld ) ) |
| 20 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 21 |
19 20
|
eqtr4di |
|- ( I e. Fin -> ( Base ` ( Scalar ` E ) ) = RR ) |
| 22 |
18
|
fveq2d |
|- ( I e. Fin -> ( 1r ` ( Scalar ` E ) ) = ( 1r ` RRfld ) ) |
| 23 |
|
re1r |
|- 1 = ( 1r ` RRfld ) |
| 24 |
22 23
|
eqtr4di |
|- ( I e. Fin -> ( 1r ` ( Scalar ` E ) ) = 1 ) |
| 25 |
24
|
oveq1d |
|- ( I e. Fin -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` ( Scalar ` E ) ) t ) ) |
| 26 |
25
|
adantr |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` ( Scalar ` E ) ) t ) ) |
| 27 |
18
|
fveq2d |
|- ( I e. Fin -> ( -g ` ( Scalar ` E ) ) = ( -g ` RRfld ) ) |
| 28 |
27
|
oveqd |
|- ( I e. Fin -> ( 1 ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` RRfld ) t ) ) |
| 29 |
28
|
adantr |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( 1 ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` RRfld ) t ) ) |
| 30 |
21
|
eleq2d |
|- ( I e. Fin -> ( t e. ( Base ` ( Scalar ` E ) ) <-> t e. RR ) ) |
| 31 |
|
1re |
|- 1 e. RR |
| 32 |
|
eqid |
|- ( -g ` RRfld ) = ( -g ` RRfld ) |
| 33 |
32
|
resubgval |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) = ( 1 ( -g ` RRfld ) t ) ) |
| 34 |
33
|
eqcomd |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) |
| 35 |
31 34
|
mpan |
|- ( t e. RR -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) |
| 36 |
30 35
|
biimtrdi |
|- ( I e. Fin -> ( t e. ( Base ` ( Scalar ` E ) ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) ) |
| 37 |
36
|
imp |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) |
| 38 |
26 29 37
|
3eqtrd |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 - t ) ) |
| 39 |
38
|
oveq1d |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) = ( ( 1 - t ) .x. x ) ) |
| 40 |
39
|
oveq1d |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) <-> p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) ) |
| 42 |
21 41
|
rexeqbidva |
|- ( I e. Fin -> ( E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) <-> E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) ) |
| 43 |
16 42
|
rabeqbidv |
|- ( I e. Fin -> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } = { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) |
| 44 |
16 17 43
|
mpoeq123dv |
|- ( I e. Fin -> ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) = ( x e. P , y e. ( P \ { x } ) |-> { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) ) |
| 45 |
13 44
|
eqtrd |
|- ( I e. Fin -> L = ( x e. P , y e. ( P \ { x } ) |-> { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) ) |