| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
|- X = { h e. ( RR ^m I ) | h finSupp 0 } |
| 2 |
|
rrxmval.d |
|- D = ( dist ` ( RR^ ` I ) ) |
| 3 |
|
simprl |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
| 4 |
1 3
|
rrxfsupp |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) e. Fin ) |
| 5 |
|
simprr |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
| 6 |
1 5
|
rrxfsupp |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) e. Fin ) |
| 7 |
|
unfi |
|- ( ( ( x supp 0 ) e. Fin /\ ( y supp 0 ) e. Fin ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) |
| 8 |
4 6 7
|
syl2anc |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) |
| 9 |
1 3
|
rrxsuppss |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ I ) |
| 10 |
1 5
|
rrxsuppss |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ I ) |
| 11 |
9 10
|
unssd |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) |
| 12 |
11
|
sselda |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> k e. I ) |
| 13 |
1 3
|
rrxf |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x : I --> RR ) |
| 14 |
13
|
ffvelcdmda |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( x ` k ) e. RR ) |
| 15 |
1 5
|
rrxf |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y : I --> RR ) |
| 16 |
15
|
ffvelcdmda |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( y ` k ) e. RR ) |
| 17 |
14 16
|
resubcld |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( x ` k ) - ( y ` k ) ) e. RR ) |
| 18 |
17
|
resqcld |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) |
| 19 |
12 18
|
syldan |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) |
| 20 |
8 19
|
fsumrecl |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR ) |
| 21 |
17
|
sqge0d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> 0 <_ ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 22 |
12 21
|
syldan |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> 0 <_ ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 23 |
8 19 22
|
fsumge0 |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> 0 <_ sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 24 |
20 23
|
resqrtcld |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR ) |
| 25 |
24
|
ralrimivva |
|- ( I e. V -> A. x e. X A. y e. X ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR ) |
| 26 |
|
eqid |
|- ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 27 |
26
|
fmpo |
|- ( A. x e. X A. y e. X ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) e. RR <-> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) |
| 28 |
25 27
|
sylib |
|- ( I e. V -> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) |
| 29 |
1 2
|
rrxmfval |
|- ( I e. V -> D = ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 30 |
29
|
feq1d |
|- ( I e. V -> ( D : ( X X. X ) --> RR <-> ( x e. X , y e. X |-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) : ( X X. X ) --> RR ) ) |
| 31 |
28 30
|
mpbird |
|- ( I e. V -> D : ( X X. X ) --> RR ) |
| 32 |
|
sqrt00 |
|- ( ( sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) e. RR /\ 0 <_ sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) |
| 33 |
20 23 32
|
syl2anc |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) |
| 34 |
8 19 22
|
fsum00 |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 ) ) |
| 35 |
17
|
recnd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( x ` k ) - ( y ` k ) ) e. CC ) |
| 36 |
|
sqeq0 |
|- ( ( ( x ` k ) - ( y ` k ) ) e. CC -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( ( x ` k ) - ( y ` k ) ) = 0 ) ) |
| 37 |
35 36
|
syl |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( ( x ` k ) - ( y ` k ) ) = 0 ) ) |
| 38 |
14
|
recnd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( x ` k ) e. CC ) |
| 39 |
16
|
recnd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( y ` k ) e. CC ) |
| 40 |
38 39
|
subeq0ad |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( x ` k ) - ( y ` k ) ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) |
| 41 |
37 40
|
bitrd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) |
| 42 |
12 41
|
syldan |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ) -> ( ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> ( x ` k ) = ( y ` k ) ) ) |
| 43 |
42
|
ralbidva |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) |
| 44 |
33 34 43
|
3bitrd |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) |
| 45 |
1 2
|
rrxmval |
|- ( ( I e. V /\ x e. X /\ y e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 46 |
45
|
3expb |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 47 |
46
|
eqeq1d |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) = 0 <-> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = 0 ) ) |
| 48 |
13
|
ffnd |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> x Fn I ) |
| 49 |
15
|
ffnd |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> y Fn I ) |
| 50 |
|
eqfnfv |
|- ( ( x Fn I /\ y Fn I ) -> ( x = y <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) |
| 51 |
48 49 50
|
syl2anc |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x = y <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) |
| 52 |
|
ssun1 |
|- ( x supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) |
| 53 |
52
|
a1i |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) ) |
| 54 |
|
simpl |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> I e. V ) |
| 55 |
|
0red |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> 0 e. RR ) |
| 56 |
13 53 54 55
|
suppssr |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( x ` k ) = 0 ) |
| 57 |
|
ssun2 |
|- ( y supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) |
| 58 |
57
|
a1i |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ ( ( x supp 0 ) u. ( y supp 0 ) ) ) |
| 59 |
15 58 54 55
|
suppssr |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( y ` k ) = 0 ) |
| 60 |
56 59
|
eqtr4d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ) -> ( x ` k ) = ( y ` k ) ) |
| 61 |
60
|
ralrimiva |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> A. k e. ( I \ ( ( x supp 0 ) u. ( y supp 0 ) ) ) ( x ` k ) = ( y ` k ) ) |
| 62 |
11 61
|
raldifeq |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) <-> A. k e. I ( x ` k ) = ( y ` k ) ) ) |
| 63 |
51 62
|
bitr4d |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( x = y <-> A. k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( x ` k ) = ( y ` k ) ) ) |
| 64 |
44 47 63
|
3bitr4d |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) = 0 <-> x = y ) ) |
| 65 |
8
|
3adant2 |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin ) |
| 66 |
|
simp2 |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> z e. X ) |
| 67 |
1 66
|
rrxfsupp |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) e. Fin ) |
| 68 |
|
unfi |
|- ( ( ( ( x supp 0 ) u. ( y supp 0 ) ) e. Fin /\ ( z supp 0 ) e. Fin ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) |
| 69 |
65 67 68
|
syl2anc |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) |
| 70 |
69
|
3expa |
|- ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) |
| 71 |
70
|
an32s |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) e. Fin ) |
| 72 |
11
|
adantr |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) |
| 73 |
|
simpr |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> z e. X ) |
| 74 |
1 73
|
rrxsuppss |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( z supp 0 ) C_ I ) |
| 75 |
72 74
|
unssd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) C_ I ) |
| 76 |
75
|
sselda |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> k e. I ) |
| 77 |
14
|
adantlr |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( x ` k ) e. RR ) |
| 78 |
1 73
|
rrxf |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> z : I --> RR ) |
| 79 |
78
|
ffvelcdmda |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( z ` k ) e. RR ) |
| 80 |
77 79
|
resubcld |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( x ` k ) - ( z ` k ) ) e. RR ) |
| 81 |
76 80
|
syldan |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( x ` k ) - ( z ` k ) ) e. RR ) |
| 82 |
16
|
adantlr |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( y ` k ) e. RR ) |
| 83 |
79 82
|
resubcld |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( z ` k ) - ( y ` k ) ) e. RR ) |
| 84 |
76 83
|
syldan |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( z ` k ) - ( y ` k ) ) e. RR ) |
| 85 |
71 81 84
|
trirn |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) ) <_ ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 86 |
38
|
adantlr |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( x ` k ) e. CC ) |
| 87 |
79
|
recnd |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( z ` k ) e. CC ) |
| 88 |
39
|
adantlr |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( y ` k ) e. CC ) |
| 89 |
86 87 88
|
npncand |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) = ( ( x ` k ) - ( y ` k ) ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 91 |
76 90
|
syldan |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 92 |
91
|
sumeq2dv |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 93 |
92
|
fveq2d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( ( x ` k ) - ( z ` k ) ) + ( ( z ` k ) - ( y ` k ) ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 94 |
|
sqsubswap |
|- ( ( ( x ` k ) e. CC /\ ( z ` k ) e. CC ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) |
| 95 |
86 87 94
|
syl2anc |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. I ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) |
| 96 |
76 95
|
syldan |
|- ( ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) /\ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) -> ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) |
| 97 |
96
|
sumeq2dv |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) |
| 98 |
97
|
fveq2d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) |
| 99 |
98
|
oveq1d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( z ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 100 |
85 93 99
|
3brtr3d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) <_ ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 101 |
46
|
adantr |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 102 |
|
simp1 |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> I e. V ) |
| 103 |
3
|
3adant2 |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> x e. X ) |
| 104 |
5
|
3adant2 |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
| 105 |
1 103
|
rrxsuppss |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ I ) |
| 106 |
1 104
|
rrxsuppss |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ I ) |
| 107 |
105 106
|
unssd |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ I ) |
| 108 |
1 66
|
rrxsuppss |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) C_ I ) |
| 109 |
107 108
|
unssd |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) C_ I ) |
| 110 |
|
ssun1 |
|- ( ( x supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) |
| 111 |
110
|
a1i |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( x supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 112 |
1 2 102 103 104 109 69 111
|
rrxmetlem |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 113 |
112
|
fveq2d |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 114 |
113
|
3expa |
|- ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 115 |
114
|
an32s |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( sqrt ` sum_ k e. ( ( x supp 0 ) u. ( y supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 116 |
101 115
|
eqtrd |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( x ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 117 |
1 2
|
rrxmval |
|- ( ( I e. V /\ z e. X /\ x e. X ) -> ( z D x ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) |
| 118 |
117
|
3adant3r |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z D x ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) |
| 119 |
1 2
|
rrxmval |
|- ( ( I e. V /\ z e. X /\ y e. X ) -> ( z D y ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 120 |
119
|
3adant3l |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z D y ) = ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 121 |
118 120
|
oveq12d |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 122 |
|
ssun2 |
|- ( z supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) |
| 123 |
122
|
a1i |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( z supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 124 |
52 110
|
sstri |
|- ( x supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) |
| 125 |
124
|
a1i |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( x supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 126 |
123 125
|
unssd |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z supp 0 ) u. ( x supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 127 |
1 2 102 66 103 109 69 126
|
rrxmetlem |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) |
| 128 |
127
|
fveq2d |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) ) |
| 129 |
57 110
|
sstri |
|- ( y supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) |
| 130 |
129
|
a1i |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( y supp 0 ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 131 |
123 130
|
unssd |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z supp 0 ) u. ( y supp 0 ) ) C_ ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ) |
| 132 |
1 2 102 66 104 109 69 131
|
rrxmetlem |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) = sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) |
| 133 |
132
|
fveq2d |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) = ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) |
| 134 |
128 133
|
oveq12d |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( x supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( z supp 0 ) u. ( y supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 135 |
121 134
|
eqtrd |
|- ( ( I e. V /\ z e. X /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 136 |
135
|
3expa |
|- ( ( ( I e. V /\ z e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 137 |
136
|
an32s |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( ( z D x ) + ( z D y ) ) = ( ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( x ` k ) ) ^ 2 ) ) + ( sqrt ` sum_ k e. ( ( ( x supp 0 ) u. ( y supp 0 ) ) u. ( z supp 0 ) ) ( ( ( z ` k ) - ( y ` k ) ) ^ 2 ) ) ) ) |
| 138 |
100 116 137
|
3brtr4d |
|- ( ( ( I e. V /\ ( x e. X /\ y e. X ) ) /\ z e. X ) -> ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) |
| 139 |
138
|
ralrimiva |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) |
| 140 |
64 139
|
jca |
|- ( ( I e. V /\ ( x e. X /\ y e. X ) ) -> ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) |
| 141 |
140
|
ralrimivva |
|- ( I e. V -> A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) |
| 142 |
|
ovex |
|- ( RR ^m I ) e. _V |
| 143 |
1 142
|
rabex2 |
|- X e. _V |
| 144 |
|
ismet |
|- ( X e. _V -> ( D e. ( Met ` X ) <-> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) ) |
| 145 |
143 144
|
ax-mp |
|- ( D e. ( Met ` X ) <-> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) |
| 146 |
31 141 145
|
sylanbrc |
|- ( I e. V -> D e. ( Met ` X ) ) |