| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmetfi.1 |
|- D = ( dist ` ( RR^ ` I ) ) |
| 2 |
|
eqid |
|- { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } |
| 3 |
2 1
|
rrxmet |
|- ( I e. Fin -> D e. ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) ) |
| 4 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
| 5 |
|
eqid |
|- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
| 6 |
4 5
|
rrxbase |
|- ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 7 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
| 8 |
7 4 5
|
rrxbasefi |
|- ( I e. Fin -> ( Base ` ( RR^ ` I ) ) = ( RR ^m I ) ) |
| 9 |
6 8
|
eqtr3d |
|- ( I e. Fin -> { h e. ( RR ^m I ) | h finSupp 0 } = ( RR ^m I ) ) |
| 10 |
9
|
fveq2d |
|- ( I e. Fin -> ( Met ` { h e. ( RR ^m I ) | h finSupp 0 } ) = ( Met ` ( RR ^m I ) ) ) |
| 11 |
3 10
|
eleqtrd |
|- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |