Step |
Hyp |
Ref |
Expression |
1 |
|
rrxmval.1 |
|- X = { h e. ( RR ^m I ) | h finSupp 0 } |
2 |
|
rrxmval.d |
|- D = ( dist ` ( RR^ ` I ) ) |
3 |
|
eqid |
|- ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) |
4 |
|
fvex |
|- ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) e. _V |
5 |
3 4
|
fnmpoi |
|- ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) |
6 |
|
eqid |
|- ( RR^ ` I ) = ( RR^ ` I ) |
7 |
|
eqid |
|- ( Base ` ( RR^ ` I ) ) = ( Base ` ( RR^ ` I ) ) |
8 |
6 7
|
rrxds |
|- ( I e. V -> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` ( RR^ ` I ) ) ) |
9 |
2 8
|
eqtr4id |
|- ( I e. V -> D = ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
10 |
6 7
|
rrxbase |
|- ( I e. V -> ( Base ` ( RR^ ` I ) ) = { h e. ( RR ^m I ) | h finSupp 0 } ) |
11 |
1 10
|
eqtr4id |
|- ( I e. V -> X = ( Base ` ( RR^ ` I ) ) ) |
12 |
11
|
sqxpeqd |
|- ( I e. V -> ( X X. X ) = ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) |
13 |
9 12
|
fneq12d |
|- ( I e. V -> ( D Fn ( X X. X ) <-> ( f e. ( Base ` ( RR^ ` I ) ) , g e. ( Base ` ( RR^ ` I ) ) |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) Fn ( ( Base ` ( RR^ ` I ) ) X. ( Base ` ( RR^ ` I ) ) ) ) ) |
14 |
5 13
|
mpbiri |
|- ( I e. V -> D Fn ( X X. X ) ) |
15 |
|
fnov |
|- ( D Fn ( X X. X ) <-> D = ( f e. X , g e. X |-> ( f D g ) ) ) |
16 |
14 15
|
sylib |
|- ( I e. V -> D = ( f e. X , g e. X |-> ( f D g ) ) ) |
17 |
1 2
|
rrxmval |
|- ( ( I e. V /\ f e. X /\ g e. X ) -> ( f D g ) = ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) |
18 |
17
|
mpoeq3dva |
|- ( I e. V -> ( f e. X , g e. X |-> ( f D g ) ) = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |
19 |
16 18
|
eqtrd |
|- ( I e. V -> D = ( f e. X , g e. X |-> ( sqrt ` sum_ k e. ( ( f supp 0 ) u. ( g supp 0 ) ) ( ( ( f ` k ) - ( g ` k ) ) ^ 2 ) ) ) ) |