| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxmval.1 |
|- X = { h e. ( RR ^m I ) | h finSupp 0 } |
| 2 |
|
simprl |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) = 0 ) |
| 3 |
|
0cn |
|- 0 e. CC |
| 4 |
2 3
|
eqeltrdi |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) e. CC ) |
| 5 |
|
simprr |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( G ` x ) = 0 ) |
| 6 |
2 5
|
eqtr4d |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( F ` x ) = ( G ` x ) ) |
| 7 |
4 6
|
subeq0bd |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( ( F ` x ) - ( G ` x ) ) = 0 ) |
| 8 |
7
|
sq0id |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) |
| 9 |
8
|
ex |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) ) |
| 10 |
|
ioran |
|- ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( -. ( F ` x ) =/= 0 /\ -. ( G ` x ) =/= 0 ) ) |
| 11 |
|
nne |
|- ( -. ( F ` x ) =/= 0 <-> ( F ` x ) = 0 ) |
| 12 |
|
nne |
|- ( -. ( G ` x ) =/= 0 <-> ( G ` x ) = 0 ) |
| 13 |
11 12
|
anbi12i |
|- ( ( -. ( F ` x ) =/= 0 /\ -. ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) |
| 14 |
10 13
|
bitri |
|- ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) |
| 15 |
14
|
a1i |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) <-> ( ( F ` x ) = 0 /\ ( G ` x ) = 0 ) ) ) |
| 16 |
|
eqidd |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) = ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ) |
| 17 |
|
simpr |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> k = x ) |
| 18 |
17
|
fveq2d |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( F ` k ) = ( F ` x ) ) |
| 19 |
17
|
fveq2d |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( G ` k ) = ( G ` x ) ) |
| 20 |
18 19
|
oveq12d |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( ( F ` k ) - ( G ` k ) ) = ( ( F ` x ) - ( G ` x ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) /\ k = x ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) ) |
| 22 |
|
simpr |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> x e. I ) |
| 23 |
|
ovex |
|- ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) e. _V |
| 24 |
23
|
a1i |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) e. _V ) |
| 25 |
16 21 22 24
|
fvmptd |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) = ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) ) |
| 26 |
25
|
neeq1d |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 <-> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) =/= 0 ) ) |
| 27 |
26
|
bicomd |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) =/= 0 <-> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 ) ) |
| 28 |
27
|
necon1bbid |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 <-> ( ( ( F ` x ) - ( G ` x ) ) ^ 2 ) = 0 ) ) |
| 29 |
9 15 28
|
3imtr4d |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( -. ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) -> -. ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 ) ) |
| 30 |
29
|
con4d |
|- ( ( ( I e. V /\ F e. X /\ G e. X ) /\ x e. I ) -> ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 -> ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) ) ) |
| 31 |
30
|
ss2rabdv |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } C_ { x e. I | ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) } ) |
| 32 |
|
unrab |
|- ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) = { x e. I | ( ( F ` x ) =/= 0 \/ ( G ` x ) =/= 0 ) } |
| 33 |
31 32
|
sseqtrrdi |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } C_ ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) ) |
| 34 |
|
simp1 |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> I e. V ) |
| 35 |
|
ovex |
|- ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. _V |
| 36 |
|
eqid |
|- ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) = ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| 37 |
35 36
|
fnmpti |
|- ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) Fn I |
| 38 |
|
suppvalfn |
|- ( ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) Fn I /\ I e. V /\ 0 e. CC ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
| 39 |
37 3 38
|
mp3an13 |
|- ( I e. V -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
| 40 |
34 39
|
syl |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) = { x e. I | ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) ` x ) =/= 0 } ) |
| 41 |
|
elrabi |
|- ( F e. { h e. ( RR ^m I ) | h finSupp 0 } -> F e. ( RR ^m I ) ) |
| 42 |
41 1
|
eleq2s |
|- ( F e. X -> F e. ( RR ^m I ) ) |
| 43 |
|
elmapi |
|- ( F e. ( RR ^m I ) -> F : I --> RR ) |
| 44 |
|
ffn |
|- ( F : I --> RR -> F Fn I ) |
| 45 |
42 43 44
|
3syl |
|- ( F e. X -> F Fn I ) |
| 46 |
45
|
3ad2ant2 |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> F Fn I ) |
| 47 |
3
|
a1i |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> 0 e. CC ) |
| 48 |
|
suppvalfn |
|- ( ( F Fn I /\ I e. V /\ 0 e. CC ) -> ( F supp 0 ) = { x e. I | ( F ` x ) =/= 0 } ) |
| 49 |
46 34 47 48
|
syl3anc |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> ( F supp 0 ) = { x e. I | ( F ` x ) =/= 0 } ) |
| 50 |
|
elrabi |
|- ( G e. { h e. ( RR ^m I ) | h finSupp 0 } -> G e. ( RR ^m I ) ) |
| 51 |
50 1
|
eleq2s |
|- ( G e. X -> G e. ( RR ^m I ) ) |
| 52 |
|
elmapi |
|- ( G e. ( RR ^m I ) -> G : I --> RR ) |
| 53 |
|
ffn |
|- ( G : I --> RR -> G Fn I ) |
| 54 |
51 52 53
|
3syl |
|- ( G e. X -> G Fn I ) |
| 55 |
54
|
3ad2ant3 |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> G Fn I ) |
| 56 |
|
suppvalfn |
|- ( ( G Fn I /\ I e. V /\ 0 e. CC ) -> ( G supp 0 ) = { x e. I | ( G ` x ) =/= 0 } ) |
| 57 |
55 34 47 56
|
syl3anc |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> ( G supp 0 ) = { x e. I | ( G ` x ) =/= 0 } ) |
| 58 |
49 57
|
uneq12d |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( F supp 0 ) u. ( G supp 0 ) ) = ( { x e. I | ( F ` x ) =/= 0 } u. { x e. I | ( G ` x ) =/= 0 } ) ) |
| 59 |
33 40 58
|
3sstr4d |
|- ( ( I e. V /\ F e. X /\ G e. X ) -> ( ( k e. I |-> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |