| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
|
resrng |
|- RRfld e. *Ring |
| 4 |
|
srngring |
|- ( RRfld e. *Ring -> RRfld e. Ring ) |
| 5 |
3 4
|
ax-mp |
|- RRfld e. Ring |
| 6 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 7 |
6
|
frlmlmod |
|- ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) |
| 8 |
5 7
|
mpan |
|- ( I e. V -> ( RRfld freeLMod I ) e. LMod ) |
| 9 |
|
lmodgrp |
|- ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) |
| 10 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 11 |
|
eqid |
|- ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 12 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 13 |
|
eqid |
|- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( RRfld freeLMod I ) ) |
| 14 |
10 11 12 13
|
tchnmfval |
|- ( ( RRfld freeLMod I ) e. Grp -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 15 |
8 9 14
|
3syl |
|- ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 16 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 17 |
16
|
fveq2d |
|- ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 18 |
16
|
fveq2d |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 19 |
10 12
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 20 |
18 2 19
|
3eqtr4g |
|- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 21 |
1 2
|
rrxbase |
|- ( I e. V -> B = { f e. ( RR ^m I ) | f finSupp 0 } ) |
| 22 |
|
ssrab2 |
|- { f e. ( RR ^m I ) | f finSupp 0 } C_ ( RR ^m I ) |
| 23 |
21 22
|
eqsstrdi |
|- ( I e. V -> B C_ ( RR ^m I ) ) |
| 24 |
23
|
sselda |
|- ( ( I e. V /\ f e. B ) -> f e. ( RR ^m I ) ) |
| 25 |
16
|
fveq2d |
|- ( I e. V -> ( .i ` H ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 26 |
1 2
|
rrxip |
|- ( I e. V -> ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) = ( .i ` H ) ) |
| 27 |
10 13
|
tcphip |
|- ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 28 |
27
|
a1i |
|- ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( .i ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 29 |
25 26 28
|
3eqtr4rd |
|- ( I e. V -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) |
| 30 |
29
|
adantr |
|- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( .i ` ( RRfld freeLMod I ) ) = ( h e. ( RR ^m I ) , g e. ( RR ^m I ) |-> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) ) ) |
| 31 |
|
simprl |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> h = f ) |
| 32 |
31
|
fveq1d |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( h ` x ) = ( f ` x ) ) |
| 33 |
|
simprr |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> g = f ) |
| 34 |
33
|
fveq1d |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( g ` x ) = ( f ` x ) ) |
| 35 |
32 34
|
oveq12d |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 36 |
35
|
adantr |
|- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 37 |
|
elmapi |
|- ( f e. ( RR ^m I ) -> f : I --> RR ) |
| 38 |
37
|
adantl |
|- ( ( I e. V /\ f e. ( RR ^m I ) ) -> f : I --> RR ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 41 |
40
|
adantlr |
|- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( f ` x ) e. CC ) |
| 42 |
41
|
sqvald |
|- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( f ` x ) ^ 2 ) = ( ( f ` x ) x. ( f ` x ) ) ) |
| 43 |
36 42
|
eqtr4d |
|- ( ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) /\ x e. I ) -> ( ( h ` x ) x. ( g ` x ) ) = ( ( f ` x ) ^ 2 ) ) |
| 44 |
43
|
mpteq2dva |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ( I e. V /\ f e. ( RR ^m I ) ) /\ ( h = f /\ g = f ) ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) x. ( g ` x ) ) ) ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 46 |
|
simpr |
|- ( ( I e. V /\ f e. ( RR ^m I ) ) -> f e. ( RR ^m I ) ) |
| 47 |
|
ovexd |
|- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) e. _V ) |
| 48 |
30 45 46 46 47
|
ovmpod |
|- ( ( I e. V /\ f e. ( RR ^m I ) ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 49 |
24 48
|
syldan |
|- ( ( I e. V /\ f e. B ) -> ( f ( .i ` ( RRfld freeLMod I ) ) f ) = ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) |
| 50 |
49
|
eqcomd |
|- ( ( I e. V /\ f e. B ) -> ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) = ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) |
| 51 |
50
|
fveq2d |
|- ( ( I e. V /\ f e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) |
| 52 |
20 51
|
mpteq12dva |
|- ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( f e. ( Base ` ( RRfld freeLMod I ) ) |-> ( sqrt ` ( f ( .i ` ( RRfld freeLMod I ) ) f ) ) ) ) |
| 53 |
15 17 52
|
3eqtr4rd |
|- ( I e. V -> ( f e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( f ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |