Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
3 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
4 |
|
refld |
|- RRfld e. Field |
5 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
6 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
7 |
5 6
|
frlmpws |
|- ( ( RRfld e. Field /\ I e. V ) -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
8 |
4 7
|
mpan |
|- ( I e. V -> ( RRfld freeLMod I ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
9 |
|
fvex |
|- ( ( subringAlg ` RRfld ) ` RR ) e. _V |
10 |
|
rlmval |
|- ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) |
11 |
|
rebase |
|- RR = ( Base ` RRfld ) |
12 |
11
|
fveq2i |
|- ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` ( Base ` RRfld ) ) |
13 |
10 12
|
eqtr4i |
|- ( ringLMod ` RRfld ) = ( ( subringAlg ` RRfld ) ` RR ) |
14 |
13
|
oveq1i |
|- ( ( ringLMod ` RRfld ) ^s I ) = ( ( ( subringAlg ` RRfld ) ` RR ) ^s I ) |
15 |
11
|
ressid |
|- ( RRfld e. Field -> ( RRfld |`s RR ) = RRfld ) |
16 |
4 15
|
ax-mp |
|- ( RRfld |`s RR ) = RRfld |
17 |
|
eqidd |
|- ( T. -> ( ( subringAlg ` RRfld ) ` RR ) = ( ( subringAlg ` RRfld ) ` RR ) ) |
18 |
11
|
eqimssi |
|- RR C_ ( Base ` RRfld ) |
19 |
18
|
a1i |
|- ( T. -> RR C_ ( Base ` RRfld ) ) |
20 |
17 19
|
srasca |
|- ( T. -> ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) ) |
21 |
20
|
mptru |
|- ( RRfld |`s RR ) = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) |
22 |
16 21
|
eqtr3i |
|- RRfld = ( Scalar ` ( ( subringAlg ` RRfld ) ` RR ) ) |
23 |
14 22
|
pwsval |
|- ( ( ( ( subringAlg ` RRfld ) ` RR ) e. _V /\ I e. V ) -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
24 |
9 23
|
mpan |
|- ( I e. V -> ( ( ringLMod ` RRfld ) ^s I ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
25 |
24
|
eqcomd |
|- ( I e. V -> ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( ( ringLMod ` RRfld ) ^s I ) ) |
26 |
3
|
fveq2d |
|- ( I e. V -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
27 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
28 |
27 6
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
29 |
26 2 28
|
3eqtr4g |
|- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
30 |
25 29
|
oveq12d |
|- ( I e. V -> ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) = ( ( ( ringLMod ` RRfld ) ^s I ) |`s ( Base ` ( RRfld freeLMod I ) ) ) ) |
31 |
8 30
|
eqtr4d |
|- ( I e. V -> ( RRfld freeLMod I ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) |
32 |
31
|
fveq2d |
|- ( I e. V -> ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |
33 |
3 32
|
eqtrd |
|- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s B ) ) ) |