| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxsca.r |
|- H = ( RR^ ` I ) |
| 2 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 3 |
1 2
|
rrxprds |
|- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 4 |
3
|
fveq2d |
|- ( I e. V -> ( Scalar ` H ) = ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) ) |
| 5 |
|
fvex |
|- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) e. _V |
| 6 |
5
|
mptex |
|- ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V |
| 7 |
|
eqid |
|- ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
| 8 |
|
eqid |
|- ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
| 9 |
7 8
|
tngsca |
|- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
| 10 |
9
|
eqcomd |
|- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 11 |
6 10
|
mp1i |
|- ( I e. V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 12 |
|
eqid |
|- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
| 13 |
|
eqid |
|- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
| 14 |
|
eqid |
|- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
| 15 |
12 13 14
|
tcphval |
|- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
| 16 |
15
|
fveq2i |
|- ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) |
| 17 |
16
|
a1i |
|- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
| 18 |
|
eqid |
|- ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |
| 19 |
|
refld |
|- RRfld e. Field |
| 20 |
19
|
a1i |
|- ( I e. V -> RRfld e. Field ) |
| 21 |
|
id |
|- ( I e. V -> I e. V ) |
| 22 |
|
snex |
|- { ( ( subringAlg ` RRfld ) ` RR ) } e. _V |
| 23 |
22
|
a1i |
|- ( I e. V -> { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) |
| 24 |
21 23
|
xpexd |
|- ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
| 25 |
18 20 24
|
prdssca |
|- ( I e. V -> RRfld = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) ) |
| 26 |
|
fvex |
|- ( Base ` H ) e. _V |
| 27 |
|
eqid |
|- ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) |
| 28 |
|
eqid |
|- ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
| 29 |
27 28
|
resssca |
|- ( ( Base ` H ) e. _V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 30 |
26 29
|
mp1i |
|- ( I e. V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 31 |
25 30
|
eqtrd |
|- ( I e. V -> RRfld = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
| 32 |
11 17 31
|
3eqtr4d |
|- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = RRfld ) |
| 33 |
4 32
|
eqtrd |
|- ( I e. V -> ( Scalar ` H ) = RRfld ) |