Step |
Hyp |
Ref |
Expression |
1 |
|
rrxsca.r |
|- H = ( RR^ ` I ) |
2 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
3 |
1 2
|
rrxprds |
|- ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
4 |
3
|
fveq2d |
|- ( I e. V -> ( Scalar ` H ) = ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) ) |
5 |
|
fvex |
|- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) e. _V |
6 |
5
|
mptex |
|- ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V |
7 |
|
eqid |
|- ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
8 |
|
eqid |
|- ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
9 |
7 8
|
tngsca |
|- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
10 |
9
|
eqcomd |
|- ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
11 |
6 10
|
mp1i |
|- ( I e. V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
12 |
|
eqid |
|- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
13 |
|
eqid |
|- ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
14 |
|
eqid |
|- ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |
15 |
12 13 14
|
tcphval |
|- ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) |
16 |
15
|
fveq2i |
|- ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) |
17 |
16
|
a1i |
|- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) |
18 |
|
eqid |
|- ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |
19 |
|
refld |
|- RRfld e. Field |
20 |
19
|
a1i |
|- ( I e. V -> RRfld e. Field ) |
21 |
|
id |
|- ( I e. V -> I e. V ) |
22 |
|
snex |
|- { ( ( subringAlg ` RRfld ) ` RR ) } e. _V |
23 |
22
|
a1i |
|- ( I e. V -> { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) |
24 |
21 23
|
xpexd |
|- ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) |
25 |
18 20 24
|
prdssca |
|- ( I e. V -> RRfld = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) ) |
26 |
|
fvex |
|- ( Base ` H ) e. _V |
27 |
|
eqid |
|- ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) |
28 |
|
eqid |
|- ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) |
29 |
27 28
|
resssca |
|- ( ( Base ` H ) e. _V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
30 |
26 29
|
mp1i |
|- ( I e. V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
31 |
25 30
|
eqtrd |
|- ( I e. V -> RRfld = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) |
32 |
11 17 31
|
3eqtr4d |
|- ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = RRfld ) |
33 |
4 32
|
eqtrd |
|- ( I e. V -> ( Scalar ` H ) = RRfld ) |