Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
rrxf.1 | |- ( ph -> F e. X ) |
||
Assertion | rrxsuppss | |- ( ph -> ( F supp 0 ) C_ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
2 | rrxf.1 | |- ( ph -> F e. X ) |
|
3 | suppssdm | |- ( F supp 0 ) C_ dom F |
|
4 | 1 2 | rrxf | |- ( ph -> F : I --> RR ) |
5 | 3 4 | fssdm | |- ( ph -> ( F supp 0 ) C_ I ) |