Metamath Proof Explorer


Theorem rrxsuppss

Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019)

Ref Expression
Hypotheses rrxmval.1
|- X = { h e. ( RR ^m I ) | h finSupp 0 }
rrxf.1
|- ( ph -> F e. X )
Assertion rrxsuppss
|- ( ph -> ( F supp 0 ) C_ I )

Proof

Step Hyp Ref Expression
1 rrxmval.1
 |-  X = { h e. ( RR ^m I ) | h finSupp 0 }
2 rrxf.1
 |-  ( ph -> F e. X )
3 suppssdm
 |-  ( F supp 0 ) C_ dom F
4 1 2 rrxf
 |-  ( ph -> F : I --> RR )
5 3 4 fssdm
 |-  ( ph -> ( F supp 0 ) C_ I )