Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
2 |
|
elex |
|- ( I e. V -> I e. _V ) |
3 |
|
oveq2 |
|- ( i = I -> ( RRfld freeLMod i ) = ( RRfld freeLMod I ) ) |
4 |
3
|
fveq2d |
|- ( i = I -> ( toCPreHil ` ( RRfld freeLMod i ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
5 |
|
df-rrx |
|- RR^ = ( i e. _V |-> ( toCPreHil ` ( RRfld freeLMod i ) ) ) |
6 |
|
fvex |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) e. _V |
7 |
4 5 6
|
fvmpt |
|- ( I e. _V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
8 |
2 7
|
syl |
|- ( I e. V -> ( RR^ ` I ) = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
9 |
1 8
|
eqtrid |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |