| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
|
rrxvsca.r |
|- .xb = ( .s ` H ) |
| 4 |
|
rrxvsca.i |
|- ( ph -> I e. V ) |
| 5 |
|
rrxvsca.j |
|- ( ph -> J e. I ) |
| 6 |
|
rrxvsca.a |
|- ( ph -> A e. RR ) |
| 7 |
|
rrxvsca.x |
|- ( ph -> X e. ( Base ` H ) ) |
| 8 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 9 |
4 8
|
syl |
|- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 10 |
9
|
fveq2d |
|- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 11 |
3 10
|
eqtrid |
|- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 12 |
11
|
oveqd |
|- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( ( A .xb X ) ` J ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) ) |
| 14 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 15 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 16 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 17 |
9
|
fveq2d |
|- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 18 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 19 |
18 15
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 20 |
17 19
|
eqtr4di |
|- ( ph -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
| 21 |
7 20
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 22 |
|
eqid |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 23 |
18 22
|
tcphvsca |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 24 |
23
|
eqcomi |
|- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 25 |
|
remulr |
|- x. = ( .r ` RRfld ) |
| 26 |
14 15 16 4 6 21 5 24 25
|
frlmvscaval |
|- ( ph -> ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) = ( A x. ( X ` J ) ) ) |
| 27 |
13 26
|
eqtrd |
|- ( ph -> ( ( A .xb X ) ` J ) = ( A x. ( X ` J ) ) ) |