Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
3 |
|
rrxvsca.r |
|- .xb = ( .s ` H ) |
4 |
|
rrxvsca.i |
|- ( ph -> I e. V ) |
5 |
|
rrxvsca.j |
|- ( ph -> J e. I ) |
6 |
|
rrxvsca.a |
|- ( ph -> A e. RR ) |
7 |
|
rrxvsca.x |
|- ( ph -> X e. ( Base ` H ) ) |
8 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
9 |
4 8
|
syl |
|- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
11 |
3 10
|
syl5eq |
|- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
12 |
11
|
oveqd |
|- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
13 |
12
|
fveq1d |
|- ( ph -> ( ( A .xb X ) ` J ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) ) |
14 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
15 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
16 |
|
rebase |
|- RR = ( Base ` RRfld ) |
17 |
9
|
fveq2d |
|- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
18 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
19 |
18 15
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
20 |
17 19
|
eqtr4di |
|- ( ph -> ( Base ` H ) = ( Base ` ( RRfld freeLMod I ) ) ) |
21 |
7 20
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
22 |
|
eqid |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
23 |
18 22
|
tcphvsca |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
24 |
23
|
eqcomi |
|- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
25 |
|
remulr |
|- x. = ( .r ` RRfld ) |
26 |
14 15 16 4 6 21 5 24 25
|
frlmvscaval |
|- ( ph -> ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ` J ) = ( A x. ( X ` J ) ) ) |
27 |
13 26
|
eqtrd |
|- ( ph -> ( ( A .xb X ) ` J ) = ( A x. ( X ` J ) ) ) |