Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcl.k | |- K = ( RSpan ` R ) | |
| rsp0.z | |- .0. = ( 0g ` R ) | ||
| Assertion | rsp0 | |- ( R e. Ring -> ( K ` { .0. } ) = { .0. } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcl.k | |- K = ( RSpan ` R ) | |
| 2 | rsp0.z | |- .0. = ( 0g ` R ) | |
| 3 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | |
| 4 | rlm0 | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) | |
| 5 | 2 4 | eqtri | |- .0. = ( 0g ` ( ringLMod ` R ) ) | 
| 6 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) | |
| 7 | 1 6 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) | 
| 8 | 5 7 | lspsn0 |  |-  ( ( ringLMod ` R ) e. LMod -> ( K ` { .0. } ) = { .0. } ) | 
| 9 | 3 8 | syl |  |-  ( R e. Ring -> ( K ` { .0. } ) = { .0. } ) |